Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers.
Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools in manufacturing, medical technology, and scientific research. However, creating short-pulse lasers that are both powerful and efficient typically requires large, complex, and costly setups.
A research team at the University of Stuttgart, working in collaboration with Stuttgart Instruments GmbH, has now overcome this challenge. Their newly developed laser system is more than twice as efficient as existing designs, small enough to fit in the palm of a hand, and adaptable for a variety of uses. Details of their innovation have been published in the journal Nature.
Eighty percent efficiency is possible
“With our new system, we can achieve levels of efficiency that were previously almost unattainable,” says Prof. Harald Giessen, Head of the 4th Physics Institute at the University of Stuttgart.
In their experiments, the researchers showed that it is fundamentally possible to reach an 80% efficiency rate with a short-pulse laser. In practical terms, this means that 80% of the energy supplied to the system can be effectively utilized.
“For comparison: current technologies achieve only about 35%—which means they lose much of their efficiency and are correspondingly expensive,” explains Giessen.
A lot of energy in an extremely short time
Short-pulse lasers emit bursts of light lasting only nano-, pico-, or femtoseconds (i.e., a few billionths to quadrillionths of a second). This capability enables them to deliver immense energy to a very small area in an incredibly brief period.
The process involves two lasers working in tandem: a pump laser and the short-pulse laser. The pump laser channels light energy into a special crystal that forms the core of the system. This crystal transfers energy from the pump laser to an ultrashort signal pulse, converting the incoming light particles into infrared light.
The result is a tool that can perform experiments, measurements, and production tasks not possible with visible light. In manufacturing, these lasers are used for ultra-precise and delicate material processing. In medicine, they enable advanced imaging techniques, while in quantum research, they allow scientists to conduct exceptionally precise measurements at the molecular scale.
Synchronize laser amplification and bandwidth
“Designing short-pulse lasers efficiently remains an unsolved challenge,” explains Dr. Tobias Steinle, lead author of the study. “In order to generate short pulses, we need to amplify the incoming light beam and cover a wide range of wavelengths.” Until now, it has not been possible to combine both properties simultaneously in a small and compact optical system.”
Laser amplifiers with a wide bandwidth require special crystals that are particularly short and thin. Efficient amplifiers, on the other hand, require especially long crystals. Connecting several short crystals in series is one possible way to combine both. It is already being pursued in research. The key is to ensure that the pulses from the pump laser and the signal laser remain synchronized.
New multipass concept
Researchers have now solved this problem with a new multipass procedure. Instead of using a single long crystal or many short crystals, they use a single short crystal and repeatedly run the light pulses through this crystal in their optical parametric amplifier.
Between two passes through the crystal, the separated pulses are precisely realigned so that they remain synchronized. The system can generate pulses shorter than 50 femtoseconds, occupies only a few square centimeters, and consists of just five components.
Highly versatile
“Our multipass system demonstrates that extremely high efficiencies need not to come at the expense of bandwidth,” explains Steinle. “It can replace large and expensive laser systems with high power losses, which were previously required to amplify ultrashort pulses.”
The new system is highly versatile and can be adapted to other wavelength ranges beyond infrared light as well as to different crystal systems and pulse durations. With this concept, the researchers aim to build small, lightweight, compact, portable, and tunable lasers capable of precisely adjusting wavelengths. They see potential areas of application in medicine, analytics, gas sensor technology, and environmental research.
Reference: “Dispersion-engineered multipass optical parametric amplification” by Jan H. Nägele, Tobias Steinle, Johann Thannheimer, Philipp Flad and Harald Giessen, 5 November 2025, Nature.
DOI: 10.1038/s41586-025-09665-w
The study was supported by the Federal Ministry of Research, Technology and Space (BMFTR) as part of the KMU-Innovativ funding line, the Federal Ministry for Economic Affairs and Energy (BMWE), the Baden-Wuerttemberg Ministry of Science, Research and the Arts, the German Research Foundation (DFG), the Carl Zeiss Foundation, the Baden-Wuerttemberg Foundation, the Center for Integrated Quantum Science and Technology (IQST), and the Innovation Campus Mobility of the Future (ICM). It was carried out by the 4th Physics Institute of the University of Stuttgart in cooperation with Stuttgart Instruments GmbH as part of the MIRESWEEP project (a novel, cost-effective tunable mid-infrared laser source for analytical applications).
News
New Molecule Blocks Deadliest Brain Cancer at Its Genetic Root
Researchers have identified a molecule that disrupts a critical gene in glioblastoma. Scientists at the UVA Comprehensive Cancer Center say they have found a small molecule that can shut down a gene tied to glioblastoma, a [...]
Scientists Finally Solve a 30-Year-Old Cancer Mystery Hidden in Rye Pollen
Nearly 30 years after rye pollen molecules were shown to slow tumor growth in animals, scientists have finally determined their exact three-dimensional structures. Nearly 30 years ago, researchers noticed something surprising in rye pollen: [...]
NanoMedical Brain/Cloud Interface – Explorations and Implications. A new book from Frank Boehm
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]















