Methacrylate-based materials are often used in bone cement and dental resins. However, they have high failure rates as they undergo damage within ten years, impacting the quality of patient’s life and increasing healthcare costs.
Although replacing methacrylate-based materials with self-healing resins and bone cement could increase lifespan, reduce costs, and enhance patient outcomes, the practical applicability of these materials is limited due to their low efficacy and toxicity. An article published in the journal ACS Omega addressed this issue by developing a dual nanocapsule-based self-healing system.
Two polyurethane (PU) shell-based nanocapsules were synthesized: an initiator capsule containing benzoyl peroxide and butylated hydroxytoluene and a monomer capsule containing triethylene glycol dimethacrylate.
Resins with these nanocapsules were tested under tension until failure, followed by assembling the fractured surfaces. 33% of samples showed self-healing behavior and could be reloaded for testing under tension. The capsules and their components were biocompatible with Caco-2 cell lines, suggesting in vivo tolerance of the prepared nanocapsules.
Nanocapsules as Self-Healing Materials
Self-healing materials, when damaged through thermal, mechanical, and ballistic effects can heal and restore materials to their original properties. Few materials intrinsically possess this self-healing ability, which is a valuable characteristic in designing systems since it effectively expands the lifetime use of the product and has desirable economic and human safety attributes.
These self-healing materials could be useful in methacrylate-based systems, including dental resins and bone cement. Aseptic loosening of bone cement by forming cracks may trigger inflammation and bone resorption, requiring expensive surgical intervention. Although modern dental resins prevent any effects on the environment and health with mercury, their poor durability causing implant damage within ten years, has increased the cost of dental care.
Nanocapsules are hollow sphere structures with submicrometer dimensions. Such nanocapsules can accommodate large quantities of guest molecules within their empty core domain. These materials could be helpful in applications in the fields of biological chemistry, synthesis, and catalysis.
Polymeric nanocapsules with a multitude of applications have already been proposed, such as confined reaction vessels, drug carriers, protective shells for cells or enzymes, transfection vectors in gene therapy, carrier systems in heterogeneous catalysis, dye dispersants, or as materials for removal of contaminated waste.
Methacrylate-based nanocapsules are easy to implement for self-healing properties in both dental resins and bone cement due to their filler particles that enhance the material’s mechanical properties. Initially, the nanocapsules simply act as an additional filler. However, when a crack propagates through the material, it breaks and releases components into the crack through capillary action that polymerizes later to heal the matrix.
Biocompatible Nanocapsules with Self-Healing Capacity
Nanocapsules were hypothesized to undergo a robust self-healing process with less impact on the mechanical properties than larger particles. Thus, the present work aimed to investigate single and dual nanocapsule systems based on PU and nontoxic components.
The impact of the prepared single and dual nanocapsules on the self-healing process of methacrylate resins was determined by synthesizing PU nanocapsules, which encapsulate either the initiator or monomer. Furthermore, the mechanical testing and biocompatibility analysis determined the system’s feasibility as a self-healing additive for bone cement and dental resins.
The monomer used here was TEGDMA, with a long shelf-life and quick polymerization capability. The healing liquid was expected to have low viscosity to flow through cracks of resin and fill it. Hence, TEGDMA was previously used as a dental monomer.
Here, using butylated hydroxytoluene (BHT) along with benzyl peroxide (BPO) prevented the formation of free radicals before their release from the capsule. Thus, the initiator component based on BPO and BHT increased the stability of the dual-capsule-based self-healing system.
The fracturing of nanocapsules was an important finding of the present work since their rupture was the basis for the self-healing process. While a too-thick shell did not allow the capsule to rupture, a too-thin shell resulted in fragile nanocapsules.
Conclusion
Overall, PU nanocapsule encapsulating TEGDMA monomer was embedded into an epoxy resin. These embedded resins were compared with their blank counterparts to determine the effects of monomer nanocapsules on the resin’s mechanical properties.
Comparing the elastic modulus, yield stress, ultimate tensile stress, and strain to fracture indicated that the resin without monomer capsules was stronger than the resin with monomer capsules. The monomer nanocapsules cracked during the resin fracture, proving the self-healing effect of the nanocapsules in resins.
Moreover, premature cracking of resins in the gastrointestinal tract did not cause any detrimental effects on the patient, suggesting the biocompatibility of the developed self-healing system. Furthermore, a small degree of self-healing capacity was observed in the resins with monomer nanocapsules, unencapsulated BPO, and the resins with monomer nanocapsules, and initiator capsules.

How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]