A Medical University of South Carolina team reports in Frontiers in Immunology that it has engineered a new type of genetically modified immune cell that can precisely target and neutralize antibody-producing cells complicit in organ rejection. Similar strategies have been used to stimulate the immune system against certain cancers, but Ferreira’s team is the first to show its utility in tamping down immune responses that can lead to organ rejection.
More than 50,000 organ transplants take place each year in the U.S. While often lifesaving, these procedures depend on a precise match between donor and recipient genes to avoid rejection. When the immune system detects foreign tissue, it can attack the transplanted organ.
For decades, doctors have used immunosuppressant drugs to lower the risk of rejection. But these drugs work broadly, suppressing the entire immune system. This can lead to side effects and shorten the life of the transplanted organ.
The MUSC team, led by Leonardo Ferreira, Ph.D., an assistant professor of Pharmacology and Immunology, showed the feasibility of targeted immunosuppression after transplant that could one day reduce rejection without leaving patients vulnerable to infection and other side effects. This strategy could also level the playing field for patients who have limited eligibility for organs because they are especially prone to rejection.
Jaime Valentín-Quiroga, first author of the article and a Ph.D. candidate at University Hospital La Paz in Madrid, Spain, working in the lab of Eduardo Lopez Collazo, Ph.D., is also co-advised by Ferreira. López-Collazo’s research team provided the patient samples for the study.
Spain is one of the leading countries worldwide in organ transplantation and offers the perfect platform to move from bench to bedside. I am lucky to be co-advised by Dr. Ferreira. His research combines my favorite topics, fine-tuning the immune system and using cutting-edge biotechnology to enhance immune cells’ natural functions.”
Jaime Valentín-Quiroga, first author of the article
Balancing the immune system
When in working balance, the immune system protects the body against outside invaders without attacking its own tissues. B-cells release antibodies that attack pathogens and infected cells. Regulatory T-cells, or Tregs, keep the immune response from going too far, preventing tissue damage and autoimmune diseases.
“When you prick your finger, it is important to mount a strong immune response to kill all the bacteria that entered your finger,” Ferreira said. “But it’s also important to bring that immune response to a halt when all the bacteria have been killed. Otherwise, you could lose your finger in the process, and the cure would be as bad as the disease.”
A key target for B-cells are human leukocyte antigen (HLA) proteins, which help the immune system to tell self from non-self. Doctors try to match donor and recipient HLA proteins as closely as possible, but with more than 40,000 HLA variants, perfect matches are rare.
One variant, HLA-A2, is found in nearly one-third of the global population. Patients who have had previous exposure to HLA-A2 are considered “pre-sensitized,” meaning their immune systems are primed to respond to it and release very large amounts of anti-HLA-A2 antibodies. These include previous transplant patients; women who, during pregnancy, carried a child with HLA-A2 inherited from their partners; and recipients of HLA-A2-positive blood transfusions. Pre-sensitized patients have a much more difficult time finding a compatible donor organ.
The CHAR approach
Ferreira’s team has developed a novel way for the Tregs to find and neutralize specifically the B-cells producing anti-HLA-A2 antibodies. They have fitted the Tregs with a CHAR – short for chimeric anti-HLA antibody receptor – which detects the appropriate B-cells and alerts the Tregs to suppress them. When CHARs detect and attach to B-cells secreting anti-HLA-A2 antibodies, they alert the Tregs to neutralize these problematic B-cells, essentially signaling the immune system to stand down and not attack the organ. In this way, not only do CHARs act like heat-seeking missiles to find the right B-cells to target, but they also hold the key to the Treg’s ignition, activating its machinery to elicit a more precise immunosuppressive response and prevent it from going overboard.
Ferreira’s team tested the efficacy of CHAR-Tregs in cells from dialysis patients with a history of kidney rejection. The cells showed high levels of anti-HLA-A2 antibodies, but exposure to CHAR-Tregs dramatically decreased antibody levels.
“We took patients’ cells that have been shown to make an extremely strong response against HLA-A2-expressing cells, and we showed that the novel CHAR-Tregs calmed them down,” said Ferreira. “I think that’s the most exciting part of our study – we show that this strategy works in the cells of actual pre-sensitized patients.”
Valentín-Quiroga, J., et al. (2025) Chimeric anti-HLA antibody receptor engineered human regulatory T cells suppress alloantigen-specific B cells from pre-sensitized transplant recipients. Frontiers in Immunology. doi.org/10.3389/fimmu.2025.1601385.
News
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]















