Key Questions Answered
Q: What did researchers discover about the serotonin 5-HT1A receptor?
A: They mapped how it activates different brain signaling pathways, offering insight into how mood and emotion are regulated at the molecular level.
Q: Why does this matter for antidepressants and antipsychotics?
A: Understanding this receptor’s precise behavior can help design faster-acting and more targeted treatments with fewer side effects.
Q: What surprising element plays a key role in receptor function?
A: A phospholipid — a fat molecule in cell membranes — acts like a co-pilot, helping steer how the receptor behaves, a first-of-its-kind discovery.
Summary: Scientists have uncovered how the brain’s 5-HT1A serotonin receptor—vital in mood regulation—functions at the molecular level. This receptor, a common target of antidepressants and psychedelics, prefers certain signaling pathways no matter the drug, but drugs can still vary in how strongly they activate them.
The study also identified a surprising helper: a phospholipid molecule that subtly guides receptor behavior. These findings could lead to more precise treatments for depression, anxiety, and psychosis.
Key Facts
- Biased Signaling: 5-HT1A favors certain pathways, regardless of drug.
- Lipid Influence: A membrane fat molecule helps control receptor activity.
- Drug Design Insight: Findings open door to more targeted psychiatric therapies.
Source: Mount Sinai Hospital
In a discovery that could guide the development of next-generation antidepressants and antipsychotic medications, researchers at the Icahn School of Medicine at Mount Sinai have developed new insights into how a critical brain receptor works at the molecular level and why that matters for mental health treatments.
The study, published in the August 1 online issue of Science Advances, focuses on the 5-HT1A serotonin receptor, a major player in regulating mood and a common target of both traditional antidepressants and newer therapies such as psychedelics.
Despite its clinical importance, this receptor has remained poorly understood, with many of its molecular and pharmacological properties largely understudied—until now.
“This receptor is like a control panel that helps manage how brain cells respond to serotonin, a key chemical involved in mood, emotion, and cognition,” says senior author Daniel Wacker, PhD, Assistant Professor of Pharmacological Sciences, and Neuroscience, at the Icahn School of Medicine at Mount Sinai.
“Our findings shed light on how that control panel operates—what switches it flips, how it fine-tunes signals, and where its limits lie. This deeper understanding could help us design better therapies for mental health conditions like depression, anxiety, and schizophrenia.”
Using innovative lab techniques, the research team discovered that the 5-HT1A receptor is inherently wired to favor certain cellular signaling pathways over others—regardless of the drug used to target it.
However, drugs can still influence the strength with which those pathways are activated. For example, the antipsychotic asenapine (brand name Saphris) was found to selectively engage a specific signaling route due to its relatively weak activity at the receptor.
To explore these mechanisms in greater detail, the researchers combined experiments in lab-grown cells with high-resolution cryo-electron microscopy—a cutting-edge imaging technology that reveals molecular structures at near-atomic resolution. Their work focused on how various drugs activate the 5-HT1A receptor and how the receptor interacts with internal signaling proteins known as G proteins.
Different signaling pathways controlled by the 5-HT1A receptor are linked to different aspects of mood, perception, and even pain. As scientists better understand which pathways are activated, and how, they can more precisely design drugs that treat specific symptoms or conditions without unwanted side effects.
“Our work provides a molecular map of how different drugs ‘push buttons’ on this receptor—activating or silencing specific pathways that influence brain function,” says study first author Audrey L. Warren, PhD, a former student in Dr. Wacker’s lab who is now a postdoctoral researcher at Columbia University.
“By understanding exactly how these drugs interact with the receptor, we can start to predict which approaches might lead to more effective or targeted treatments and which ones are unlikely to work. It’s a step toward designing next-generation therapies with greater precision and fewer side effects.”
In a particularly surprising finding, the researchers discovered that a phospholipid—a type of fat molecule found in cell membranes—plays a major role in steering the receptor’s activity, almost like a hidden co-pilot. This is the first time such a role has been observed among the more than 700 known receptors of this type in the human body.
While current antidepressants often take weeks to work, scientists hope this new understanding of 5-HT1A signaling could help explain those delays and lead to faster-acting alternatives.
“This receptor may help explain why standard antidepressants take long to work,” says Dr. Wacker.
“By understanding how it functions at a molecular level, we have a clearer path to designing faster, more effective treatments, not just for depression, but also for conditions like psychosis and chronic pain. It’s a key piece of the puzzle.”
Next, the research team plans to dig deeper into the role of the phospholipid “co-factor” and to test how their lab-based findings hold up in more complex experiments. They’re also working on turning these discoveries into real-world compounds that could become future psychiatric medications, building on their earlier success with drug candidates derived from psychedelics.
The paper is titled “Structural determinants of G protein subtype selectivity at the serotonin receptor 5-HT1A.”
The study’s authors, as listed in the journal, are Audrey L. Warren, Gregory Zilberg, Anwar Abbassi, Alejandro Abraham, Shifan Yang, and Daniel Wacker.
Funding: This work was supported by NIH grant GM133504. Further support came from NIH T32 Training Grant GM062754 and DA053558 and NIH F31 fellowship MH132317.
News
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]















