Key Questions Answered
Q: What did researchers discover about the serotonin 5-HT1A receptor?
A: They mapped how it activates different brain signaling pathways, offering insight into how mood and emotion are regulated at the molecular level.
Q: Why does this matter for antidepressants and antipsychotics?
A: Understanding this receptor’s precise behavior can help design faster-acting and more targeted treatments with fewer side effects.
Q: What surprising element plays a key role in receptor function?
A: A phospholipid — a fat molecule in cell membranes — acts like a co-pilot, helping steer how the receptor behaves, a first-of-its-kind discovery.
Summary: Scientists have uncovered how the brain’s 5-HT1A serotonin receptor—vital in mood regulation—functions at the molecular level. This receptor, a common target of antidepressants and psychedelics, prefers certain signaling pathways no matter the drug, but drugs can still vary in how strongly they activate them.
The study also identified a surprising helper: a phospholipid molecule that subtly guides receptor behavior. These findings could lead to more precise treatments for depression, anxiety, and psychosis.
Key Facts
- Biased Signaling: 5-HT1A favors certain pathways, regardless of drug.
- Lipid Influence: A membrane fat molecule helps control receptor activity.
- Drug Design Insight: Findings open door to more targeted psychiatric therapies.
Source: Mount Sinai Hospital
In a discovery that could guide the development of next-generation antidepressants and antipsychotic medications, researchers at the Icahn School of Medicine at Mount Sinai have developed new insights into how a critical brain receptor works at the molecular level and why that matters for mental health treatments.
The study, published in the August 1 online issue of Science Advances, focuses on the 5-HT1A serotonin receptor, a major player in regulating mood and a common target of both traditional antidepressants and newer therapies such as psychedelics.
Despite its clinical importance, this receptor has remained poorly understood, with many of its molecular and pharmacological properties largely understudied—until now.
“This receptor is like a control panel that helps manage how brain cells respond to serotonin, a key chemical involved in mood, emotion, and cognition,” says senior author Daniel Wacker, PhD, Assistant Professor of Pharmacological Sciences, and Neuroscience, at the Icahn School of Medicine at Mount Sinai.
“Our findings shed light on how that control panel operates—what switches it flips, how it fine-tunes signals, and where its limits lie. This deeper understanding could help us design better therapies for mental health conditions like depression, anxiety, and schizophrenia.”
Using innovative lab techniques, the research team discovered that the 5-HT1A receptor is inherently wired to favor certain cellular signaling pathways over others—regardless of the drug used to target it.
However, drugs can still influence the strength with which those pathways are activated. For example, the antipsychotic asenapine (brand name Saphris) was found to selectively engage a specific signaling route due to its relatively weak activity at the receptor.
To explore these mechanisms in greater detail, the researchers combined experiments in lab-grown cells with high-resolution cryo-electron microscopy—a cutting-edge imaging technology that reveals molecular structures at near-atomic resolution. Their work focused on how various drugs activate the 5-HT1A receptor and how the receptor interacts with internal signaling proteins known as G proteins.
Different signaling pathways controlled by the 5-HT1A receptor are linked to different aspects of mood, perception, and even pain. As scientists better understand which pathways are activated, and how, they can more precisely design drugs that treat specific symptoms or conditions without unwanted side effects.
“Our work provides a molecular map of how different drugs ‘push buttons’ on this receptor—activating or silencing specific pathways that influence brain function,” says study first author Audrey L. Warren, PhD, a former student in Dr. Wacker’s lab who is now a postdoctoral researcher at Columbia University.
“By understanding exactly how these drugs interact with the receptor, we can start to predict which approaches might lead to more effective or targeted treatments and which ones are unlikely to work. It’s a step toward designing next-generation therapies with greater precision and fewer side effects.”
In a particularly surprising finding, the researchers discovered that a phospholipid—a type of fat molecule found in cell membranes—plays a major role in steering the receptor’s activity, almost like a hidden co-pilot. This is the first time such a role has been observed among the more than 700 known receptors of this type in the human body.
While current antidepressants often take weeks to work, scientists hope this new understanding of 5-HT1A signaling could help explain those delays and lead to faster-acting alternatives.
“This receptor may help explain why standard antidepressants take long to work,” says Dr. Wacker.
“By understanding how it functions at a molecular level, we have a clearer path to designing faster, more effective treatments, not just for depression, but also for conditions like psychosis and chronic pain. It’s a key piece of the puzzle.”
Next, the research team plans to dig deeper into the role of the phospholipid “co-factor” and to test how their lab-based findings hold up in more complex experiments. They’re also working on turning these discoveries into real-world compounds that could become future psychiatric medications, building on their earlier success with drug candidates derived from psychedelics.
The paper is titled “Structural determinants of G protein subtype selectivity at the serotonin receptor 5-HT1A.”
The study’s authors, as listed in the journal, are Audrey L. Warren, Gregory Zilberg, Anwar Abbassi, Alejandro Abraham, Shifan Yang, and Daniel Wacker.
Funding: This work was supported by NIH grant GM133504. Further support came from NIH T32 Training Grant GM062754 and DA053558 and NIH F31 fellowship MH132317.
News
Deadly Pancreatic Cancer Found To “Wire Itself” Into the Body’s Nerves
A newly discovered link between pancreatic cancer and neural signaling reveals a promising drug target that slows tumor growth by blocking glutamate uptake. Pancreatic cancer is among the most deadly cancers, and scientists are [...]
This Simple Brain Exercise May Protect Against Dementia for 20 Years
A long-running study following thousands of older adults suggests that a relatively brief period of targeted brain training may have effects that last decades. Starting in the late 1990s, close to 3,000 older adults [...]
Scientists Crack a 50-Year Tissue Mystery With Major Cancer Implications
Researchers have resolved a 50-year-old scientific mystery by identifying the molecular mechanism that allows tissues to regenerate after severe damage. The discovery could help guide future treatments aimed at reducing the risk of cancer [...]
This New Blood Test Can Detect Cancer Before Tumors Appear
A new CRISPR-powered light sensor can detect the faintest whispers of cancer in a single drop of blood. Scientists have created an advanced light-based sensor capable of identifying extremely small amounts of cancer biomarkers [...]
Blindness Breakthrough? This Snail Regrows Eyes in 30 Days
A snail that regrows its eyes may hold the genetic clues to restoring human sight. Human eyes are intricate organs that cannot regrow once damaged. Surprisingly, they share key structural features with the eyes [...]
This Is Why the Same Virus Hits People So Differently
Scientists have mapped how genetics and life experiences leave lasting epigenetic marks on immune cells. The discovery helps explain why people respond so differently to the same infections and could lead to more personalized [...]
Rejuvenating neurons restores learning and memory in mice
EPFL scientists report that briefly switching on three “reprogramming” genes in a small set of memory-trace neurons restored memory in aged mice and in mouse models of Alzheimer’s disease to level of healthy young [...]
New book from Nanoappsmedical Inc. – Global Health Care Equivalency
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
New Molecule Blocks Deadliest Brain Cancer at Its Genetic Root
Researchers have identified a molecule that disrupts a critical gene in glioblastoma. Scientists at the UVA Comprehensive Cancer Center say they have found a small molecule that can shut down a gene tied to glioblastoma, a [...]
Scientists Finally Solve a 30-Year-Old Cancer Mystery Hidden in Rye Pollen
Nearly 30 years after rye pollen molecules were shown to slow tumor growth in animals, scientists have finally determined their exact three-dimensional structures. Nearly 30 years ago, researchers noticed something surprising in rye pollen: [...]
NanoMedical Brain/Cloud Interface – Explorations and Implications. A new book from Frank Boehm
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]















