Scientists at the Helmholtz Zentrum München, a partner in the German Center for Lung Research, have presented a new imaging method in the scientific journal ACS Nano (“Three-Dimensional Quantitative Co-Mapping of Pulmonary Morphology and Nanoparticle Distribution with Cellular Resolution in Nondissected Murine Lungs”).

This now makes it possible, for the first time, to visualize intact mouse lungs and map the spatial distribution of nanoparticles inside them. The new technique can be used, for example, to measure the efficacy of active substances used in inhaled aerosol therapies.

Nanoparticles are tiny particles that can penetrate right through to distant parts of the body. Often, they are associated with adverse health effects, but at the same time novel approaches are also being tested to assess their therapeutic uses, for example as inhaled aerosol drugs. A research team led by Dr. Otmar Schmid, research group leader at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, has now developed a method that will enable a much more thorough examination of the effectiveness of pulmonary aerosol therapy than was previously possible.

“In preclinical tests up to now, the lung had to be examined under the microscope in segments – in other words, tissue section by tissue section,” explains study leader Otmar Schmid. “This is very time consuming, doesn’t capture the entire organ and for certain aspects it is not quantitative.” Initially, it was hoped that tissue clearing, a method whereby chemical processes render entire organs transparent, would permit a more detailed examination. Using this technique, the tissue can be illuminated layer by layer and then represented as a 3D image.

Image Credit:  Helmholtz Zentrum München

Read more at nanowerk.com

News This Week

Green Method to Make Nanoparticles and Ultrafine Powder

A novel freeze-dissolving approach has been devised that offers greater efficiency and sustainability compared to the classic freeze-drying process to make superfine powder or nanoparticles.​​​​​​​ In the research published in the journal ACS Sustainable Chemistry & Engineering, sphere-shaped [...]

Could gold nanoparticles help treat cancer?

Gold nanoparticles are minuscule particles made of gold. From drug and gene delivery to photothermal and photodynamic therapies to screening and diagnostic tests to radiation therapy, X-ray imaging and CT scans, these small particles [...]