A novel combination of artificial intelligence and production techniques could change the future of nanomedicine, according to Cornell researchers using a new $3 million grant from the National Science Foundation to revolutionize how polymer nanoparticles are manufactured.
Polymer nanoparticles have emerged as a powerful tool for delivering medicine to precisely the right place, at the right time, inside the human body, but their use has been limited by the complexity of manufacturing.
“It can take decades for a company to design a molecular recipe and make it consistently reproducible at a large scale,” said Rong Yang, assistant professor in the Smith School of Chemical and Biomolecular Engineering and lead investigator on the grant. “There’s a bottleneck going from bench-scale synthesis to industry-scale manufacturing, and that’s what we’re trying to address.”
Yang and collaborators will be utilizing AI to analyze and guide the production of polymer nanoparticles in real time. As nanoparticles are being synthesized with an initiated chemical vapor deposition (iCVD) system, the researchers will incorporate liquid crystals that leave an “optical fingerprint” to be read by computer vision. The resulting data will be employed to train a convolutional neural network to identify information about the polymer nanoparticles, and then used for real-time, automated decision-making during the assembly process.
“We’ll be using liquid crystals as a solvent and also as a display, the same type you might find in your television screen,” Yang said. “We can use them to draw a connection between the material properties, like the molecular weight, size and morphology of the polymer nanoparticles, then link that to the optical output that we read from the AI.”
Bringing expertise in liquid crystals to the research is co-principal investigator Nicholas Abbott, the Tisch University Professor in the Smith School, while expertise in artificial intelligence will come from co-principle investigator Fengqi You, the Roxanne E. and Michael J. Zak Professor in Energy Systems Engineering.
If successful, the research would not only generate new cyber-driven approaches to manufacturing, but eventually revolutionize how polymer nanoparticles and nanomedicines can be made, according to Yang.
“Imagine everyone taking a slightly different version of a pill, manufactured right on the spot to have personalized medicine,” said Yang, who added that this type manufacturing could also change the production of other products containing polymers, such as construction materials. “Rapid characterization and feedback into the synthesis process could crack open all these possibilities that didn’t exist before.”
Other co-principal investigators on the grant include Allison Godwin, associate professor in the Smith School, and Jan Genzer, professor of chemical and biomolecular engineering at North Carolina State University.

News
Repurposed drugs could calm the immune system’s response to nanomedicine
An international study led by researchers at the University of Colorado Anschutz Medical Campus has identified a promising strategy to enhance the safety of nanomedicines, advanced therapies often used in cancer and vaccine treatments, [...]
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]