A novel combination of artificial intelligence and production techniques could change the future of nanomedicine, according to Cornell researchers using a new $3 million grant from the National Science Foundation to revolutionize how polymer nanoparticles are manufactured.
Polymer nanoparticles have emerged as a powerful tool for delivering medicine to precisely the right place, at the right time, inside the human body, but their use has been limited by the complexity of manufacturing.
“It can take decades for a company to design a molecular recipe and make it consistently reproducible at a large scale,” said Rong Yang, assistant professor in the Smith School of Chemical and Biomolecular Engineering and lead investigator on the grant. “There’s a bottleneck going from bench-scale synthesis to industry-scale manufacturing, and that’s what we’re trying to address.”
Yang and collaborators will be utilizing AI to analyze and guide the production of polymer nanoparticles in real time. As nanoparticles are being synthesized with an initiated chemical vapor deposition (iCVD) system, the researchers will incorporate liquid crystals that leave an “optical fingerprint” to be read by computer vision. The resulting data will be employed to train a convolutional neural network to identify information about the polymer nanoparticles, and then used for real-time, automated decision-making during the assembly process.
“We’ll be using liquid crystals as a solvent and also as a display, the same type you might find in your television screen,” Yang said. “We can use them to draw a connection between the material properties, like the molecular weight, size and morphology of the polymer nanoparticles, then link that to the optical output that we read from the AI.”
Bringing expertise in liquid crystals to the research is co-principal investigator Nicholas Abbott, the Tisch University Professor in the Smith School, while expertise in artificial intelligence will come from co-principle investigator Fengqi You, the Roxanne E. and Michael J. Zak Professor in Energy Systems Engineering.
If successful, the research would not only generate new cyber-driven approaches to manufacturing, but eventually revolutionize how polymer nanoparticles and nanomedicines can be made, according to Yang.
“Imagine everyone taking a slightly different version of a pill, manufactured right on the spot to have personalized medicine,” said Yang, who added that this type manufacturing could also change the production of other products containing polymers, such as construction materials. “Rapid characterization and feedback into the synthesis process could crack open all these possibilities that didn’t exist before.”
Other co-principal investigators on the grant include Allison Godwin, associate professor in the Smith School, and Jan Genzer, professor of chemical and biomolecular engineering at North Carolina State University.

News
A potential milestone in cancer therapy
Researchers from the University of Bern, Inselspital, University Hospital Bern, and the University of Connecticut have made a significant breakthrough in the fight against cancer. They identified a previously unknown weak point of prostate [...]
Cardiovascular Crystal Ball: New Tool Predicts Future Heart Disease Risk
Faculty members at the UM School of Medicine have created a cutting-edge tool that enables the early identification and assessment of risks in vulnerable patients. Heart disease, being the leading cause of death globally, [...]
Scientists analyze a single atom with X-rays for the first time
In the most powerful X-ray facilities in the world, scientists can analyze samples so small they contain only 10,000 atoms. Smaller sizes have proved exceedingly difficult to achieve, but a multi-institutional team has scaled [...]
AI Demonstrates Superior Performance in Predicting Breast Cancer
AI algorithms outperformed traditional clinical risk models in a large-scale study, predicting five-year breast cancer risk more accurately. These models use mammograms as the single data source, offering potential advantages in individualizing patient care [...]
Stanford Medicine Reveals: Tiny DNA Circles Defying Genetic Laws Drive Cancer Formation
Tiny circles of DNA harbor cancer-associated oncogenes and immunomodulatory genes promoting cancer development. They arise during the transformation from pre-cancer to cancer, say Stanford Medicine-led team. Tiny circles of DNA that defy the accepted laws of [...]
Death to Blood Cancer Cells: New Drug Combination Could Revive the Power of Leading Treatment
Future clinical trials will be conducted to investigate whether the combination of chloroquine and venetoclax can prevent disease recurrence. Although new drugs have been developed to induce cancer cell death in individuals with acute [...]
Illuminating Science: X-Rays Visualize How One of Nature’s Strongest Bonds Breaks
Scientists have deciphered how an activated catalyst breaks down the strong carbon-hydrogen bonds in potent greenhouse gas methane, according to a study published in Science. Using advanced X-ray technology and quantum-chemical calculations, they tracked the [...]
Using magnetic nanoparticles as a rapid test for sepsis
Qun Ren, an Empa researcher, and her team are currently developing a diagnostic procedure that can rapidly detect life-threatening blood poisoning caused by staphylococcus bacteria. Staphylococcal sepsis is fatal in up to 40% of [...]
Team develops nanoparticles to deliver brain cancer treatment
University of Queensland researchers have developed a nanoparticle to take a chemotherapy drug into fast growing, aggressive brain tumors. Research team lead Dr. Taskeen Janjua from UQ's School of Pharmacy said the new silica [...]
Tumor Avatars – A New Approach to Personalized Cancer Treatment
A team from the University of Geneva (UNIGE) has devised a novel method for customizing treatments by testing them on artificial tumors. Determining the optimal treatment for colon cancer can be challenging as each [...]
STING Like a Bee: MIT’s Revolutionary Approach to Cancer Immunotherapy
A cancer vaccine combining checkpoint blockade therapy and a STING-activating drug eliminates tumors and prevents recurrence in mice. MIT researchers have engineered a therapeutic cancer vaccine that targets the STING pathway, vital for immune response [...]
AI Battles Superbugs: Helps Find New Antibiotic Drug To Combat Drug-Resistant Infections
The machine-learning algorithm identified a compound that kills Acinetobacter baumannii, a bacterium that lurks in many hospital settings. Using an artificial intelligence algorithm, researchers at MIT and McMaster University have identified a new antibiotic that can kill a [...]
Cancer and AI – Can ChatGPT Be Trusted?
A study published in the Journal of The National Cancer Institute Cancer Spectrum delved into the increasing use of chatbots and artificial intelligence (AI) in providing cancer-related information. The researchers discovered that these digital resources accurately [...]
Breathing New Life: Oxygen Therapy Improves Heart Function in Long COVID Patients
A small trial has found that hyperbaric oxygen therapy (HBOT) may help restore proper heart function in patients with post-COVID syndrome, with participants in the HBOT group experiencing a significant increase in global longitudinal [...]
Wireless Brain-Spine Interface: A Leap Towards Reversing Paralysis
Summary: In a pioneering study, researchers designed a wireless brain-spine interface enabling a paralyzed man to walk naturally again. The ‘digital bridge’ comprises two electronic implants — one on the brain and another on the [...]
New study reveals a gel that promises to wipe out brain cancer for good
An anti-cancer gel promises to wipe out glioblastoma permanently, a feat that's never been accomplished by any drug or surgery. So what makes this gel so special? Scientists at Johns Hopkins University (JHU) have [...]