A recent article published in the journal ACS Nano discusses the application of Escherichia coli (E. coli)-mimetic nanomaterials for photolytic treatment of CT-26 or 4T1 tumors.
The authors synthesized the target nanomaterials using E. coli membrane proteins, gold nanorods (AuNRs), and adhesion proteins and named them E. coli-mimetic AuNRs (ECA). Further, the synthesized ECA showed a preventive effect in mice with CT-26 or 4T1 tumors under 808-nanometer laser irradiations.
Metastasis or reoccurrence are the key reasons behind the increase in cancer mortality, and treating recurrent or metastatic cancers is the end goal of cancer therapy. Combination therapy is an effective treatment for metastasis and reoccurrence. Further, combining nanomaterial-based phototherapy with chemotherapy has a scope in cancer treatment.
Nanomaterials in Cancer Therapy
Selective treatment of cancer cells through immunotherapy involves activation of immune cells, especially T lymphocytes aiding in eliminating cancer by inducing antigen-specific cytotoxicity. In this context, the dendritic cells (DCs) activated T cells selectively destroy antigen-expressing cells in cancer treatment.
Photothermal therapy (PTT) used for localized cancer treatment involves light energy conversion into thermal energy upon irradiation with a near-infrared (NIR) laser.
Nanomaterials can carry drugs to specific targets and aid in effective disease treatment. Further, they are used in combinational therapy to deliver more than one drug. Moreover, nanoparticles based on inorganic materials such as iron oxide nanoparticles, mesoporous silica nanoparticles, AuNRs, and quantum dots are effective PTT agents. AuNRs are efficient for photothermal conversion and surface functionalization and have good biocompatibility. However, cetyltrimethylammonium bromide (CTAB) on their surface makes them highly toxic, and surface modification of AuNRs helps reduce their toxicity.
ECA in Cancer Treatment
In the present study, the authors optimized the sonication and temperature conditions to synthesize ECA. Under NIR irradiation, while the AuNR in ECA had a phototherapeutic effect, the anticancer immunity was induced by the adhesion and surface proteins of ECA. Further, the authors used the synthesized ECA to treat primary tumors and secondary metastatic cancer in mice. The results revealed that the NIR laser light at 808 nanometers raised the temperature in ECA-treated tumor cells and induced apoptotic or necrotic cell death, exhibiting a therapeutic effect on CT-26 and 4T1 tumors in mice.
ClearColi lysate, fimbrin D-mannose-specific adhesin (FimH), and NIR laser irradiation activated immune cells, including T cells and DCs in tumor-draining lymph nodes (tdLNs). Finally, the mice transplanted with CT-26 or 4T1 tumors were cured of the primary tumor and blocked secondary lung metastasis on treatment with ECA.
ECA Characterization and Evaluation of its Therapeutic Potential
The morphology of ECA was analyzed by employing transmission electron microscopy (TEM). The resulting images showed a liposomal corona on the surface of AuNR on the peripheral side of liposome-coated AuNR (LCA) and ECA. The dynamic light scattering (DLS) studies revealed that the hydrodynamic sizes of LCA and ECA were 93.72 ± 2.7 and 116.8 ± 6.5 nanometers, respectively. Further, LCA and ECA showed a negative zeta potential of −4.6 and −12.7 millivolts.
The analysis of ECA using Fourier-transform infrared (FT-IR) spectra revealed characteristic peaks of phospholipids at 1735-centimeter inverse that corresponds to the carbonyl group, 1230-centimeter inverse to metaphosphate ion (PO2−), 1075-centimeter inverse to ether linkage (C-O-O) and peaks at 1646, and 1394-centimeter inverse that corresponds to amide bond. This data confirmed ECA modification with phospholipids, ClearColi lysate, and FimH on the surface of AuNR.
The studies of the photothermal effect of AuNR, LCA, and ECA revealed that the NIR irradiation on these nanomaterials induced a temperature rise and stimulated apoptotic/necrotic cell death. However, there was no temperature rise or apoptotic/necrotic cell death without laser irradiation, thus confirming the application of AuNR, LCA, and ECA as photothermal materials for tumor treatment.
Further, injecting Bagg Albino (BALB/c) mouse with PBS, liposome, FimH, liposome + FimH, AuNR, LCA, and ECA and irradiating with NIR laser of 808 nanometers showed a temperature rise at the tumor sites of AuNR, LCA, and ECA. However, the tumors treated with PBS, liposome, FimH, liposome + FimH had no response. Twenty days after treatment, the mice did not show tumor growth, reoccurrence, liver toxicity, or alanine aminotransferase (ALT) levels elevation in serum. This confirms the potential of AuNR, LCA, and ECA as PTT agents against tumors.
Later, the authors observed that the mice treated with AuNR and LCA PTT agents as the first tumor treatment showed partial resistance to the second cancer challenge without antigen-specific T-cell activities. However, the ECA PTT treatment stimulated antigen production and immune activation to promote antigen-specific immune activity, thus protecting against lung metastatic cancer (second challenge) in mice.
Conclusion
The authors of this study realized the goal of treating cancer metastasis or recurrence with a novel ECA nanomaterial. The synthesized ECA upon NIR laser irradiation-induced immune cell activation in the tumor-draining lymph nodes. Further ECA showed a therapeutic effect against CT-26 colonic epithelial cell carcinoma and 4T1 orthotopic breast cancer.
Thus, the results show the dual functionality of ECA nanomaterials as PTT for primary cancer treatment and immunotherapy against recurrence and metastasis. The authors believe that ECA will be used to block metastasis and treat primary cancers in humans in the future.
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















