Scientists discover that even mild COVID-19 can alter brain proteins linked to Alzheimer’s disease, potentially increasing dementia risk—raising urgent public health concerns.
A recent study published in the journal Nature Medicine investigated whether both mild and severe cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are linked to changes in brain biomarkers associated with Alzheimer’s disease.
By analyzing blood samples from the United Kingdom (U.K.) Biobank participants, the researchers found that individuals who had COVID-19 showed signs of increased brain pathology, raising critical public health concerns.
Background
As the world continues to recover from the COVID-19 pandemic, scientists are investigating its long-term effects on brain health. Past research has shown that viral infections can trigger systemic inflammation, a key factor in neurodegenerative diseases such as Alzheimer’s disease. Emerging evidence suggests that people who have had severe COVID-19 may be at a higher risk of cognitive decline, but the underlying mechanisms remain unclear.
Alzheimer’s disease is associated with changes in brain proteins such as beta-amyloid and tau, which can be detected in blood samples years before disease symptoms appear. Biomarkers such as amyloid-beta ratio (Aβ42:Aβ40), phosphorylated tau (pTau-181), and neurofilament light chain (NfL) help researchers assess early signs of neurodegeneration.
However, previous studies have focused mainly on severe COVID-19 cases, leaving a gap in understanding the risks for those with mild-to-moderate infections. Given the emerging evidence that even mild or moderate cases of COVID-19 can result in post-acute sequelae of COVID-19 (PASC), this study aimed to determine whether SARS-CoV-2 infection—regardless of severity— could contribute to changes in these critical biomarkers.
About the Study
To explore the potential link between COVID-19 and Alzheimer’s disease-related pathology, the research team analyzed blood plasma samples from participants in the U.K. Biobank COVID-19 imaging repeat study.
The study included 626 individuals who had tested positive for SARS-CoV-2 and 626 matched controls who had not been infected, who had been selected based on health records, antigen test results, and antibody testing. The controls were matched based on age, sex, ethnicity, and location to minimize confounding factors. Notably, the study accounted for key variables such as APOE genotype, hypertension, and lifestyle factors, ensuring a more rigorous comparison between cases and controls.
Blood samples were collected before and after the pandemic for the U.K. Biobank study, allowing researchers to track changes in key neurodegeneration biomarkers. Using ultrasensitive assays, they measured beta-amyloid (Aβ40, Aβ42), pTau-181, NfL, and glial fibrillary acidic protein (GFAP). Additionally, the study utilized proteomic analysis of 1,468 proteins using the Olink Explore platform, providing a broader understanding of how SARS-CoV-2 affects systemic health.
a, Experimental design. Protein concentrations were assayed from plasma samples acquired from the UK Biobank imaging assessment visits, the second of which was specifically recruited for the study of COVID-19. b, Distribution of participant ages at the pandemic assessment. c, Sources of evidence for case selection. Antibody, home-based lateral-flow SARS-CoV-2 antibody test; Antigen, PCR antigen (swab) test; Health records, GP and/or hospital records. d, Distribution of pre-pandemic assessment visit dates. e, Distribution of pandemic assessment visit dates. f, Distribution of intervals between assessments. g, Estimated dates of COVID symptoms (from participants with antigen test results). Figure created with BioRender.com.
The team also examined cognitive function and neuroimaging data to assess brain health over time. The study controlled for pre-existing conditions such as hypertension, diabetes, and obesity to isolate the effect of COVID-19. By comparing biomarker levels before and after the SARS-CoV-2 infection, the researchers aimed to determine whether COVID-19 had a measurable impact on early indicators of Alzheimer’s disease.
Findings
The study found that individuals who had COVID-19 exhibited significant changes in brain biomarkers associated with Alzheimer’s disease. The Aβ42:Aβ40 ratio, a key marker of beta-amyloid buildup, was lower in COVID-19-positive participants compared to their matched controls. A reduced ratio of these proteins is commonly linked to Alzheimer’s pathology.
Additionally, the study observed increased levels of pTau-181, a protein associated with tau tangles in the brain, and elevated NfL levels, which indicated neuronal damage. GFAP, a marker of astrocyte activation and neuroinflammation, was also higher in those who had COVID-19.
Strikingly, these biomarker changes were comparable to four years of aging or 60% of the effect size of inheriting a single APOE-ε4 allele, a well-known genetic risk factor for Alzheimer’s disease.
These biomarker changes were more pronounced in older individuals (particularly those over 70 years old) and those with pre-existing risk factors such as hypertension and obesity. Interestingly, even participants who had mild or asymptomatic COVID-19 showed alterations in their plasma biomarkers, suggesting that the infection’s impact on brain health may not be limited to severe cases.
The researchers also analyzed cognitive test scores and neuroimaging data, finding that COVID-19-positive individuals exhibited lower cognitive test performance compared to controls—equivalent to almost two years of age-related cognitive decline. Brain imaging revealed structural patterns associated with Alzheimer’s disease in some participants, further reinforcing the potential link between COVID-19 and neurodegeneration.
Additionally, the study found that certain inflammatory markers, including TNFSF10 (TRAIL), PTX3, and IL-6, were altered in post-COVID individuals, suggesting a prolonged inflammatory response that could contribute to brain pathology.
The researchers explained that while this study does not establish a direct causal link between COVID-19 and Alzheimer’s, the results raise concerns about the potential long-term neurological consequences of the viral infection. The findings also highlighted the importance of monitoring brain health in post-COVID-19 patients and considering preventive strategies for at-risk patients.
Conclusions
Overall, the study provided new evidence that COVID-19 may accelerate Alzheimer’s disease-related brain changes, even in individuals with mild infections. The observed alterations in plasma biomarkers suggested a potential long-term impact on brain health.
While further research is needed to confirm these findings, the authors emphasized that their results align with previous reports suggesting an increased incidence of dementia following COVID-19. These findings highlight the importance of long-term monitoring, preventive interventions, and future public health strategies aimed at mitigating post-COVID neurological risks.
- Duff, E. P., Zetterberg, H., Heslegrave, A., Dehghan, A., Elliott, P., Allen, N., Runz, H., Laban, R., Veleva, E., Whelan, C. D., Sun, B. B., & Matthews, P. M. (2025). Plasma proteomic evidence for increased β-amyloid pathology after SARS-CoV-2 infection. Nature Medicine. DOI:10.1038/s41591-024-03426-4, https://www.nature.com/articles/s41591-024-03426-4
News
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]















