Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma cells and healthy fibroblasts on a dish and found that tracking and analysis of their paths can be used to differentiate them with up to 94% accuracy. Beyond diagnosis, their technique may also shed light on cell motility related functions, like tissue healing.
While scientists and medical experts have been looking at cells under the microscope for many centuries, most studies and diagnoses focus on their shape, what they contain, and where different parts are located inside. But cells are dynamic, changing over time, and are known to be able to move. By accurately tracking and analyzing their motion, we may be able to differentiate cells which have functions relying on cell migration. An important example is cancer metastasis, where the motility of cancerous cells allows them to spread.
However, this is easier said than done. For one, studying a small subset of cells can give biased results. Any accurate diagnostic technique would rely on automated, high-throughput tracking of a significant number of cells. Many methods then turn to fluorescent labeling, which makes cells much easier to see under the microscope. But this labeling procedure can itself affect their properties. The ultimate goal is an automated method which uses label-free conventional microscopy to characterize cell motility and show whether cells are healthy or not.
Now, a team of researchers from Tokyo Metropolitan University led by Professor Hiromi Miyoshi have come up with a way of tracking cells using phase-contrast microscopy, one of the most common ways of observing cells. Phase-contrast microscopy is entirely label free, allowing cells to move about on a petri dish closer to their native state, and is not affected by the optical properties of the plastic petri dishes through which cells are imaged. Through innovative image analysis, they were able to extract trajectories of many individual cells. They focused on properties of the paths taken, like migration speed, and how curvy the paths were, all of which would encode subtle differences in deformation and movement.
As a test, they compared healthy fibroblast cells, the key component of animal tissue, and malignant fibrosarcoma cells, cancerous cells which derive from fibrous connective tissue. They were able to show that the cells migrated in subtly different ways, as characterized by the “sum of turn angles” (how curvy the paths were), the frequency of shallow turns, and how quickly they moved. In fact, by combining both the sum of turn angles and how often they made shallow turns, they could predict whether a cell was cancerous or not with an accuracy of 94%.
The team’s work not only promises a new way to discriminate cancer cells, but applications to research of any biological function based on cell motility, like the healing of wounds and tissue growth.
This work was supported by JSPS KAKENHI Grant Number JP24K01998, Tokyo Metropolitan Government Advanced Research Grant Number R2-2, and the TMU Strategic Research Fund for Social Engagement.
Endo, S., et al. (2025). Development of label-free cell tracking for discrimination of the heterogeneous mesenchymal migration. PLoS ONE. doi.org/10.1371/journal.pone.0320287.
Image Credit:
[/fusion_text][/fusion_builder_column][/fusion_builder_row]
[/fusion_builder_container]
News
Study Shows Brain Signals Only Matter if They Arrive on Time
Signals are processed only if they reach the brain during brief receptive cycles. This timing mechanism explains how attention filters information and may inform therapies and brain-inspired technologies. It has long been recognized that [...]
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]