Decades of work by a series of researchers has led to a groundbreaking drug, innovative patents, and the launch of a new startup.
A scientific journey decades in the making at Duke University has discovered a novel antibiotic approach to combat gram-negative bacteria, including Salmonella, Pseudomonas, and E. coli, which are often responsible for urinary tract infections (UTIs). The synthetic molecule works fast and is durable in animal tests.
“If you disrupt the synthesis of the bacterial outer membrane, the bacteria cannot survive without it,” said lead investigator Pei Zhou, a professor of biochemistry at the Duke School of Medicine. “Our compound is very good and very potent.”
And it works fast. “LPC-233 can reduce bacterial viability by 100,000-fold within four hours,” Zhou said.
The compound is also tenacious enough to survive all the way to the urinary tract after oral administration, which may make it a vital tool against stubborn urinary tract infections (UTIs).
In animal studies, the compound was successful when administered orally and intravenously or injected into the abdomen. In one experiment, mice given what should have been a fatal dose of multidrug-resistant bacteria were rescued by the new compound.
The search for this compound took decades because of the specificity and safety required of the synthetic molecule.
Zhou credits his late colleague, former Duke Biochemistry Chair Christian Raetz, for starting the search decades ago. “He spent his entire career working on this pathway,” Zhou said. “Dr. Raetz proposed a conceptual blueprint for this pathway in the 1980s, and it took him over two decades to identify all of the players,” Zhou said.
The new drug’s target is an enzyme called LpxC which is the second enzyme in the “Raetz pathway” and is essential to making the outer membrane lipid in gram-negative bacteria.
Raetz joined Duke as the chairman of biochemistry in 1993 after his work on this pathway at Merck & Co. had failed to produce a successful clinical candidate. The Merck antibiotic worked, but only against E. coli, so it wasn’t commercially viable and the pharmaceutical company dropped it.
“He actually recruited me to Duke to work on this enzyme, initially just from the structural biology perspective,” said Zhou, who came to Duke in 2001.
Zhou and Raetz had solved the structure of the LpxC enzyme and revealed molecular details of a few potential inhibitors. “We realized that we could tweak the compound to make it better,” Zhou said. Since then, Zhou has been working with his colleague, Duke Chemistry professor Eric Toone, to make more potent LpxC inhibitors.
The first human trial of LpxC inhibitors had failed because of cardiovascular toxicity. The focus of the Duke group’s subsequent work was to avoid cardiovascular effects while maintaining the potency of the compound.
They worked on more than 200 different versions of the enzyme inhibitor, always searching for better safety and more potency. Other compounds worked to varying degrees, but compound number 233 was the winner.
LPC-233 fits a binding spot on the LpxC enzyme and prevents it from doing its work. “It fits in the right way to inhibit formation of the lipid,” Zhou said. “We’re jamming the system.”
Adding to its durability, the compound works by a remarkable two-step process, Zhou said. After the initial binding to LpxC, the enzyme-inhibitor complex changes its shape somewhat to become an even more stable complex.
The lifetime of the inhibitor binding in this more stable complex is longer than the lifetime of the bacteria. “We think that contributes to the potency, as it has a semi-permanent effect on the enzyme,” he said. “Even after the unbound drug is metabolized by the body, the enzyme is still inhibited due to the extremely slow inhibitor dissociation process,” Zhou said.
There are multiple patents being filed on the series of compounds, and Toone and Zhou have co-founded a company called Valanbio Therapeutics, Inc. which will be looking for partners to bring LPC-233 through phase 1 clinical trials to assess safety and efficacy in humans.
“All of these studies were done in animals,” Zhou said. “Ultimately the cardiovascular safety needs to be tested in humans.”
Reference: “Preclinical safety and efficacy characterization of an LpxC inhibitor against Gram-negative pathogens” by Jinshi Zhao, C. Skyler Cochrane, Javaria Najeeb, David Gooden, Carly Sciandra, Ping Fan, Nadine Lemaitre, Kate Newns, Robert A. Nicholas, Ziqiang Guan, Joshua T. Thaden, Vance G. Fowler, Ivan Spasojevic, Florent Sebbane, Eric J. Toone, Clayton Duncan, Richard Gammans and Pei Zhou, 9 August 2023, Science Translational Medicine.
DOI: 10.1126/scitranslmed.adf5668
Large scale synthesis of LPC-233 was first accomplished by David Gooden at the Duke Small Molecule Synthesis Facility. Vance Fowler and Joshua Thaden (Duke School of Medicine), Ziqiang Guan (Biochemistry), and Ivan Spasojevic (Duke PK/PD Core) helped with in vivo studies, mass spectrometry, and pharmacokinetics analysis.
This work was supported by grants from National Institutes of Health (R01 GM115355, AI094475, AI152896, AI148366), the North Carolina Biotechnology Center (2016-TEG-1501), and a National Cancer Institute Comprehensive Cancer Center Core Grant (P30CA014236).

News
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]
Cyborg tadpoles are helping us learn how brain development starts
How does our brain, which is capable of generating complex thoughts, actions and even self-reflection, grow out of essentially nothing? An experiment in tadpoles, in which an electronic implant was incorporated into a precursor [...]
Prime Editing: The Next Frontier in Genetic Medicine
By Dr. Chinta SidharthanReviewed by Benedette Cuffari, M.Sc. Discover how prime editing is redefining the future of medicine by offering highly precise, safe, and versatile DNA corrections, bringing hope for more effective treatments for genetic diseases [...]
Can scientists predict life longevity from a drop of blood?
Discover how a new epigenetic clock measures how fast you are really aging from just a drop of blood or saliva. A recent study published in the journal Nature Aging constructed an intrinsic capacity (IC) clock [...]
What is different about the NB.1.8.1 Covid variant?
For many of us, Covid-19 feels like a chapter we’ve closed – along with the days of PCR tests, mask mandates and daily case updates. But while life may feel back to normal, the [...]
Scientists discover single cell creatures can learn new behaviours
It was previously thought that learning behaviours only applied to animals with complex brain and nervous systems, but a new study has proven that this may also occur in individual cells. As a result, this new evidence may change how [...]
Virus which ’causes multiple organ failure’ found at popular Spanish holiday destination
British tourists planning trips to Spain have been warned after a deadly virus that can cause multiple organ failure has been detected in the country. The Foreign Office issued the alert on its dedicated website Travel [...]
Urgent health warning as dangerous new Covid virus from China triggers US outbreak
A dangerous new Covid variant from China is surging in California, health officials warn. The California Department of Public Health warned this week the highly contagious NB.1.8.1 strain has been detected in the state, making it the [...]
How the evolution of a single gene allowed the plague to adapt, prolonging the pandemics
Scientists have documented the way a single gene in the bacterium that causes bubonic plague, Yersinia pestis, allowed it to survive hundreds of years by adjusting its virulence and the length of time it [...]
Inhalable Nanovaccines: The Future of Needle-Free Immunization
The COVID-19 pandemic highlighted the need for adaptable and scalable vaccine technologies. While mRNA vaccines have improved disease prevention, most are delivered by intramuscular injection, which may not effectively prevent infections that begin at [...]
‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover
A new material developed at Cornell University could significantly improve the delivery and effectiveness of mRNA vaccines by replacing a commonly used ingredient that may trigger unwanted immune responses in some people. Thanks to [...]
You could be inhaling nearly 70,000 plastic particles annually, what it means for your health
Invisible plastics in the air are infiltrating our bodies and cities. Scientists reveal the urgent health dangers and outline bold solutions for a cleaner, safer future. In a recent review article published in the [...]
Experts explain how H5 avian influenza adapts to infect more animals
A new global review reveals how rapidly evolving H5 bird flu viruses are reaching new species, including dairy cattle, and stresses the urgent need for coordinated action to prevent the next pandemic. Since its [...]
3D-printed device enables precise modeling of complex human tissues in the lab
A new, easily adopted, 3D-printed device will enable scientists to create models of human tissue with even greater control and complexity. An interdisciplinary group of researchers at the University of Washington and UW Medicine [...]
Ancient DNA sheds light on evolution of relapsing fever bacteria
Researchers at the Francis Crick Institute and UCL have analyzed ancient DNA from Borrelia recurrentis, a type of bacteria that causes relapsing fever, pinpointing when it evolved to spread through lice rather than ticks, and [...]
Cold Sore Virus Linked to Alzheimer’s, Antivirals May Lower Risk
Summary: A large study suggests that symptomatic infection with herpes simplex virus 1 (HSV-1)—best known for causing cold sores—may significantly raise the risk of developing Alzheimer’s disease. Researchers found that people with HSV-1 were 80% [...]