UC study of Fernald data links environmental phenols to heart toxicities
Environmental phenols are present in numerous everyday consumer products, serving as preservatives in packaged foods, parabens in shampoos, and bisphenol A (BPA) in plastic dishware. Consequently, people are consistently exposed to these chemicals on a daily basis.
Some of these environmental phenols are known to have cardiac toxicities. Now, an interdisciplinary study involving four University of Cincinnati College of Medicine professors is revealing their adverse impact on the heart's electrical properties, and the research has been published in the journal Environmental Health.
"This is the first study to look at the impact of phenol exposure on cardiac electrical activity in humans," said Hong-Sheng Wang, PhD, professor in the Department of Pharmacology, Physiology and Neurobiology and the study's lead author.
Researchers used data from the Fernald Community Cohort, which includes nearly 10,000 people who lived near the former U.S. Department of Energy uranium processing site at Fernald, outside Cincinnati, and participated in the Fernald Medical Monitoring Program between 1990 and 2008.
Much of the cohort did not experience exposure to uranium beyond the radiation received by the general population. Wang and his team used their data, including biological samples and medical records, in the study so uranium exposure would not be a factor in the findings — making them relevant to the general population. Because urine samples and electrocardiograms, or EKGs, were collected on the same day, the results were significant for analyzing exposure to environmental phenols.
The EKGs, which measure cardiac electrical activities, were read by board-certified physicians, and the urine samples were sent to the Centers for Disease Control and Prevention for exposure analysis.
Findings on the Heart's Electrical Activity
One goal of the study was to identify any changes in EKG parameters associated with environmental phenol exposure.
The heart is driven by electrical activity, so anything affecting its electrical properties can have a detrimental impact and possibly result in arrhythmias.
The research concluded higher exposure to some environmental phenols is associated with altered cardiac electrical activity.
Researchers found higher exposure to BPA, BPF, and BPA+F in women is associated with a longer PR interval, a delay in the time it takes for electrical signals to move from the atria at the top of the heart to the ventricles.
"Our findings were highly sex-specific," said Wang. In women, researchers identified an association with longer QRS duration, or contraction of the ventricles, and dysfunction of the electrical impulses of the heart.
"It was particularly pronounced in women with higher body mass indexes," said Wang.
In men, researchers found higher exposure to triclocarban (TCC), an antimicrobial agent, led to longer QT intervals in the heart — meaning the heart's electrical system is taking too long to recharge, a situation that can contribute to heart rhythm dysfunction. TCC has since been banned in the United States.
Implications for Heart Health
Wang also pointed out that typical exposure levels alone are unlikely to cause clinically significant heart disease in healthy people.
"These were not dramatic changes that we observed, but moderate changes to cardiac electrical activity," he said. "However, they were particularly pronounced in certain subpopulations."
He said the altered cardiac activity could exacerbate existing heart disease or arrhythmias in a patient, especially older adults or those with other risk factors.
"Now there are new chemicals out there, so the next step would be to examine these newer environmental chemicals and to focus on their impact on an individual level in those who are predisposed to heart disease," said Wang.
Reference: "Association of same-day urinary phenol levels and cardiac electrical alterations: analysis of the Fernald Community Cohort" by Jack Rubinstein, Susan M. Pinney, Changchun Xie and Hong-Sheng Wang, 19 September 2024, Environmental Health.
DOI: 10.1186/s12940-024-01114-x
Other contributors in this study included Susan Pinney, PhD, FACE, professor of epidemiology in the Department of Environmental and Public Health Sciences; Jack Rubinstein, MD, FACC, professor of clinical cardiology in the Department of Internal Medicine; and Changchun Xie, PhD, professor in the Department of Biostatistics, Health Informatics and Data Sciences.
This study was funded by grants from the National Institute of Environmental Health and the University of Cincinnati Center for Environmental Genetics.
News
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]















