All displays consist of a lattice of tiny dots of light, called pixels, the brightness of which can be individually controlled. The total number of pixels—and therefore, the resolution and display size—is limited by how many of these pixels can be addressed within a given fraction of a second. Therefore, display manufacturers try to use in the pixel control units materials that exhibit a very high “electron mobility”, which is a measure for how quickly current will start to flow through such a control unit as a response to voltage being applied—and thus, how “quick” the pixel is. | |
A new material called “ITZO” (for its constituent elements indium, tin, zinc and oxygen) promises to be up to seven times faster than the current state-of-the-art material. However, it has not been clear where this improvement comes from, hampering its adoption for industrial applications. | |
Hokkaido University material scientist Hiromichi Ohta and his team used their unique measurement technique to clarify this point. In their recent paper published in the journal Applied Electronic Materials (“Thermopower Modulation Analyses of High-Mobility Transparent Amorphous Oxide Semiconductor Thin-Film Transistors”), they showed that the higher electron mobility results from the unusual fact that in ITZO films of sufficient thickness, free charges accumulate at the interface with the carrier material and thus enable passing-through electrons to travel through the bulk of the material unhindered. |
The unique ability of the group around Ohta comes down to a very simple formula: The electron mobility is proportional to the free travel time of the charge carriers—electrons in this case—divided by their effective mass. And while the measurement of the electron mobility itself is a relatively standard technique, effective mass and free travel time cannot be measured as easily, and therefore it is difficult to tell what factor is responsible for the electron mobility. | |
But by measuring how the electric field inside the material changes in response to an applied magnetic field as well as to a temperature gradient, Ohta’s team could deduce the effective mass of the electrons—and then calculate the free travel time, as well. | |
It turns out that both the effective mass is significantly smaller than in current state-of-the-art materials and the free travel time is much higher and, therefore, both factors contribute to the higher electron mobility. | |
In addition, by observing how their results depend on the thickness of the ITZO material, they could deduce how interface and bulk of the material contribute to these effects. | |
Ohta explains the significance of this analysis: “Using the knowledge we gained from this study, we may in the future design other transparent oxide semiconductor thin-film transistors with different chemical compositions that exhibit even better electron mobility properties.” Thus, this study is a major step towards the next generation of ultra high-resolution displays. |

News
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]