University at Albany researchers at the RNA Institute have developed a new method to test COVID-19 vaccine integrity that could allow anyone with basic skills in vaccine handling to detect expired vaccines quickly and effectively, without specialized lab equipment.
By employing laser-derived signals to assess vaccine stability, the method can be performed on sealed vials with no disruption to the vaccine’s therapeutic effects. The system could be contained in a portable unit for easy transport and handling.
The research marks an important advancement in mRNA vaccine technology and was featured on the January 2024 cover of Analytical Chemistry.
“Current methods for testing the integrity of mRNA-based vaccines are destructive, time-consuming, costly and require highly skilled personnel,” said collaborator Lamyaa Almehmadi, who led this study as a Ph.D. student at UAlbany’s RNA Institute and is now working as a postdoc at MIT.
“There is an unmet need for a quick and easy method to test the stability of mRNA vaccines distributed to vaccine clinics, medical offices and pharmacies worldwide. To the best of my knowledge, our method is the first to enable an in-situ, non-destructive and reagent-free approach for mRNA stability analysis in mRNA-based vaccines.”
When the first mRNA vaccines for COVID-19 were being rolled out, concerns quickly emerged around vaccine transport and storage. This is because the vaccines rely on active mRNA molecules that can degrade with prolonged exposure to sunlight and/or temperatures outside the range of minus 80 to minus 20 degrees Celsius.
Although mRNA vaccines pose special logistical challenges, the global public health community has successfully implemented systems to maintain optimal conditions for vaccine stability. With these systems in place, this new method can provide an additional layer of assurance to guarantee vaccine stability and bolster confidence in their efficacy.
Using lasers to assess vaccine stability
The method employs a unique Raman spectroscopy instrument developed by UAlbany’s Igor Lednev, the Williams-Raycheff Endowed Professor in the Department of Chemistry. The technique involves pointing an ultraviolet (UV) laser into a liquid, which creates scattered light that can be detected and analyzed, revealing chemical signatures.
Since its invention about 20 years ago, Lednev’s lab has adapted the technology, combined with advanced machine learning, for various applications including forensic science and disease detection.
In this latest application, Lednev’s team developed a way to detect small changes in mRNA structure that indicate loss of therapeutic functionality.
“Our method works by shining a deep-UV laser through a vial of vaccine and collecting the resulting scattered light,” said Almehmadi.
“This scattered light is then detected by our instrument, and our software processes it to yield the RNA signature, known as the Raman spectrum. The mRNA Raman spectrum is then used for RNA degradation analysis. The test is rapid, typically taking just a few minutes to complete.”
Compact tech to improve accessibility
Unlike existing methods used to test vaccine stability which require specialized training and must be conducted in a lab, this method can be fully contained in a handheld instrument. It is also non-invasive, so could be used to test multiple vials of vaccine, which, if found to be stable, could then be administered.
“Individuals with basic training in handling vaccine vials and operating the instrument could utilize our method effectively in a variety of settings outside a lab,” said Almehmadi.
“Furthermore, with the assistance of advanced software, the process of data collection and results interpretation can be automated, making it accessible to a wider range of users.”
“The technology that we’ve developed in this study is universal in several important ways,” said Lednev.
“It allows for obtaining mRNA spectral characteristics in situ without disintegrating the vaccine capsule. It is also nondestructive; should the test result be positive, the vaccine could then be used for the treatment. For these reasons, our novel technology might find numerous applications for testing the stability of various mRNA vaccines, and mRNA therapeutics in general.”
Lednev notes that this work was a collaborative, interdisciplinary effort made possible with the expertise of Alexander Shekhtman and Sergei Reverdatto, both in UAlbany’s Department of Chemistry, who designed and prepared the model vaccines used in this study and conducted biochemical tests to evaluate vaccine stability.
More information: Lamyaa M. Almehmadi et al, In Situ Stability Test for mRNA Vaccines Based on Deep-UV Resonance Raman Spectroscopy, Analytical Chemistry (2023). DOI: 10.1021/acs.analchem.3c01761
Journal information: Analytical Chemistry
Provided by University at Albany
News
Inside the Nano-Universe: New 3D X-Ray Imaging Transforms Material Science
A cutting-edge X-ray method reveals the 3D orientation of nanoscale material structures, offering fresh insights into their functionality. Researchers at the Swiss Light Source (SLS) have developed a groundbreaking technique called X-ray linear dichroic orientation tomography [...]
X-chromosome study reveals hidden genetic links to Alzheimer’s disease
Despite decades of research, the X-chromosome’s impact on Alzheimer’s was largely ignored until now. Explore how seven newly discovered genetic loci could revolutionize our understanding of the disease. Conventional investigations of the genetic contributors [...]
The Unresolved Puzzle of Long COVID: 30% of Young People Still Suffer After Two Years
A UCL study found that 70% of young people with long Covid recovered within 24 months, but recovery was less likely among older teenagers, females, and those from deprived backgrounds. Researchers emphasized the need [...]
Needle-Free: New Nano-Vaccine Effective Against All COVID-19 Variants
A new nano-vaccine developed by TAU and the University of Lisbon offers a needle-free, room-temperature-storable solution against COVID-19, targeting all key variants effectively. Professor Ronit Satchi-Fainaro’s lab at Tel Aviv University’s Faculty of Medical and [...]
Photoacoustic PDA-ICG Nanoprobe for Detecting Senescent Cells in Cancer
A study in Scientific Reports evaluated a photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detecting senescent cells. Senescent cells play a role in tumor progression and therapeutic resistance, with potential adverse effects such as inflammation and tissue [...]
How Dysregulated Cell Signaling Causes Disease
Cell signaling is crucial for cells to communicate and function correctly. Disruptions in these pathways, caused by genetic mutations or environmental factors, can lead to uncontrolled cell growth, improper immune responses, or errors in [...]
Scientists Develop Super-Strong, Eco-Friendly Plastic That Bacteria Can Eat
Researchers at the Weizmann Institute have developed a biodegradable composite material that could play a significant role in addressing the global plastic waste crisis. Billions of tons of plastic waste clutter our planet. Most [...]
Building a “Google Maps” for Biology: Human Cell Atlas Revolutionizes Medicine
New research from the Human Cell Atlas offers insights into cell development, disease mechanisms, and genetic influences, enhancing our understanding of human biology and health. The Human Cell Atlas (HCA) consortium has made significant [...]
Bioeconomic Potential: Scientists Just Found 140 Reasons to Love Spider Venom
Researchers at the LOEWE Centre for Translational Biodiversity Genomics (TBG) have discovered a significant diversity of enzymes in spider venom, previously overshadowed by the focus on neurotoxins. These enzymes, found across 140 different families, [...]
Quantum Algorithms and the Future of Precision Medicine
Precision medicine is reshaping healthcare by tailoring treatments to individual patients based on their unique genetic, environmental, and lifestyle factors. At the forefront of this revolution, the integration of quantum computing and machine learning [...]
Scientists Have Discovered a Simple Supplement That Causes Prostate Cancer Cells To Self-Destruct
Menadione, a vitamin K precursor, shows promise in slowing prostate cancer in mice by disrupting cancer cell survival processes, with potential applications for human treatment and myotubular myopathy therapy. Prostate cancer is a quiet [...]
Scientists reveal structural link for initiation of protein synthesis in bacteria
Within a cell, DNA carries the genetic code for building proteins. To build proteins, the cell makes a copy of DNA, called mRNA. Then, another molecule called a ribosome reads the mRNA, translating it [...]
Vaping Isn’t Safe: Scientists Uncover Alarming Vascular Risks
Smoking and vaping impair vascular function, even without nicotine, with the most significant effects seen in nicotine-containing e-cigarettes. Researchers recommend avoiding both for better health. Researchers have discovered immediate impacts of cigarette and e-cigarette [...]
Twice-Yearly Lenacapavir for PrEP Reduces HIV Infections by 96%
Twice-yearly injections of the capsid inhibitor drug lenacapavir can prevent the vast majority of HIV infections, according to a Phase 3 clinical trial published Wednesday in the New England Journal of Medicine. HIV pre-exposure [...]
Did Social Distancing Begin 6,000 Years Ago? Neolithic Villagers May Have Invented It
Social distancing may have roots 6,000 years ago, as research shows Neolithic villages like Nebelivka used clustered layouts to control disease spread. The phrase “social distancing” became widely recognized in recent years as people [...]
Decoding Alzheimer’s: The Arctic Mutation’s Role in Unusual Brain Structures
Researchers have uncovered how certain genetic mutations lead to unique spherical amyloid plaques in inherited forms of Alzheimer’s, offering insights that could advance our understanding of the disease and improve therapeutic strategies. An international collaboration [...]