In an article recently published in the journal Applied Surface Science, the researchers synthesized green fluorescent carbon dots (G-CDs) from 3,5-diaminobenzoic acid and citric acid. The as-prepared G-CDs were used to target the nucleolus and to carry exogenous DNA molecules into the nucleolus. In addition, the carbon dots (CDs) were used to monitor the levels of nitrite ions (NO2–) and pH in biological cells.
Role of Nucleolus, NO2– and pH in Living Cells
CDs are carbon nanomaterials considered quasispherical particles with a size of fewer than 10 nanometers. Due to their advantages, including outstanding photostability, superior photoluminescence, excellent biocompatibility low toxicity, and easy functionalization, CDs are extensively applied in biological sensing, cell imaging, gene delivery, catalysis, and fingerprints detection.
The nucleolus is located inside the nucleus and it is the site for processing ribosomal RNA (rRNA) transcripts, ribosomal DNA transcription by RNA polymerase I, and ribosome assembly. Monitoring the state of the nucleolus is critical for detecting malignant lesions and developing accurate treatment.
Although CDs were recently applied as fluorescent (FL) labeling reagents for nucleolus staining, their research application as nucleolus-targeted probes is practically unexplored.
Many human diseases are caused by genetic changes inside the nucleolus. Thus, transmitting normal genes with therapeutic efficacy into the nucleolus can exert a therapeutic role or correct gene defects. However, the internalization of naked genetic materials by target cells may be hampered due to phagocyte uptake, susceptibility to serum nuclease, or rapid renal clearance. To this end, various vectors were developed to introduce the gene into the nucleolus. However, these vectors have limitations like high toxicity and low transfection efficiency.
NO2– is used as a preservative in the food industry. Although a moderate amount of NO2– is beneficial to human health, excess presence could convert hemoglobin into methemoglobin in human blood, which may cause hypoxia and interact with secondary amines and amides present in the stomach to produce nitrosamine and may induce cancer and hypertension. Thus, detection of NO2– is critical for disease diagnosis. Similarly, pH plays a vital role in physiological processes, and irregular pH changes lead to various diseases. Measuring intracellular pH is also crucial for disease diagnosis.
G-CDs for Nucleolus Targeting, Gene Delivery, and Biosensing of NO2– and pH
In the present study, the researchers synthesized G-CDs from citric acid and 3,5-diaminobenzoic acid via a single-step hydrothermal method. As-prepared G-CDs showed excellent biocompatibility and low toxicity. The G-CDs were applied to the target nucleolus based on G-CD’s DNA-sensitive properties to carry the exogenous DNA into the nucleolus. Moreover, the G-CDs were used to monitor NO2– and pH in a biological cell.
Research Findings
Transmission electron microscope (TEM) images demonstrated G-CDs’ quasi-spherical structure with favorable dispersion and size distribution in the scope of 1-5 nanometers with an average size of 2.16 ± 0.52 nanometers. Atomic force microscopy revealed that G-CDs’ height range was between 5.2 and 5.1 nanometers.
Fourier transform infrared (FTIR) spectrum and X-ray diffraction patterns inferred the composition and functional groups. G-CD’s XRD pattern showed three characteristic peaks at 281.9, 396.9, and 528.8 electronvolts corresponding to C1s, N1s, and O1s, respectively.
The C1s spectrum illustrated four peaks corroborating the existence of the following bonds, carbon-carbon double (C=C, 284.8 electronvolts), carbon-nitrogen (C-N, 286 electronvolts), acetyl (O=C–C, 287.8 electronvolts) and carbonyl (C=O, 288.9 electronvolts). N1s spectrum decomposed into three peaks corresponding to carbon-nitrogen-carbon (C-N-C, 398.8 electronvolts) and nitrogen-hydrogen (N-H, 400.1 electronvolts). O1s spectrum also decomposed into three peaks of C=O (531.8 electronvolts) and carbon-hydroxyl (C-OH, 533.2 electronvolts), and ether (C-O-C, 533.9 electronvolts)
FTIR spectrum showed absorption bands for N–H and C–H at 2927.3 and 2579.3-centimeter inverse, respectively. The peak at 1690.9-centimeter inverse corroborated the existence of the C=O functional group, those at 1593.9 and 1464.4-centimeter inverse COO– group. Moreover, the peaks at 1394.7, 1334.8, 1210.5, and 1121.1-centimeter inverse correspond to C–H bending vibration, C-N stretching vibrations, O-H and C–O bond, respectively.
G-CD’s complex efficiency for DNA was investigated through an agarose gel electrophoresis assay by observing the movement of DNA. The results showed that free DNA had easy migration to the opposite end, while with the increasing weight ratio of G-CD to DNA, DNA binding with G-CD was gradually blocked, and complete blockage occurred when the ratio reached 50:1. Complete blockage in DNA migration confirms the effective loading of DNA in G-CDs.
Conclusion
To conclude, the researchers used 3,5-diaminobenzoic acid and citric acid as precursors to develop G-CDs via a single-step hydrothermal reaction. The as-prepared G-CDs served the purpose of staining nucleolus, carrying exogenous DNA into nucleolus, and visually monitoring pH and NO2– variations in living cells. Additionally, the team anticipated that the proposed G-CDs were biocompatible gene carriers with low toxicity. Thus, these CDs have good prospects in gene therapy that targets nucleolus.

News
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]