An international team, led by Swinburne University of Technology and Australian National University (ANU), have made a breakthrough discovery that could potentially lead to faster, more accurate molecular or virus tests, including for COVID-19.
The team is co-led by Director of Swinburne’s Centre for Translational Atomaterials, Professor Baohua Jia, and head of the ANU’s Nonlinear Physics Centre, Distinguished Professor Yuri Kivshar. Together, they have solved one of the most persistent challenges in the study and engineering of light at nanoscale (known as nanophotonics): light field enhancement at a nanoscale. Basically, how to produce huge light energy on a miniscule scale.
Their discovery enables the creation of ultracompact sensing chips. These are the size of 100 microns (for context, that’s the size of a strand of your hair) with unprecedented sensitivity for detecting pathogens.
It brings enormous advantages, including faster and more accurate molecular detection in blood and saliva. This would vastly improve our ability to test and track viruses, reducing the chance of community transmission of contagious viruses. And, it could also play an important role in preventative health by revolutionizing how surplus sugars and other anomalies in the blood are detected.
Butterfly wings, which inspired the breakthrough, are made up of thousands of layers of tiny scales. When light hits a butterfly wing, it travels through those layers, and each layer has a concentrating effect.
“We should always learn from nature. In this work, nature-inspired innovation creates the solution to this challenge,” says Distinguished Professor Yuri Kivshar from ANU, who co-led the research with Professor Baohua Jia from Swinburne.
So, the researchers set to work designing and fabricating a nanophotonic chip that mimicked the structure of a Bicyclus butterfly wing. 3D laser nanoprinting took place in Swinburne’s Advanced Manufacturing and Design Centre. With the chip in hand, they deposited a testing sample on top and found they had achieved the impossible: they’d uncovered a way to manipulate space and time to concentrate light precisely as they pleased.
Because concentrated light has the power to pick up fewer pathogenic cells, it means everything can be scaled right down—wait times, sample sizes and testing materials. With less wastage, it’s a sustainability win too.
“We think this breakthrough will bring new possibilities and opportunities into this entire field,” Dr. Yao Liang, the first author of this study, adds.
“We are glad we have done the “mission impossible” in this field,” says Dr. Han Lin.
“We are looking forward to developing more applications based on this technology in the near future,” Professor Baohua Jia adds.
News
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]















