Viruses lead a rather repetitive existence. They enter a cell, hijack its machinery to turn it into a viral copy machine, and those copies head on to other cells armed with instructions to do the same. So it goes, over and over again. But somewhat often, amidst this repeated copy-pasting, things get mixed up. Mutations arise in the copies. Sometimes, a mutation means an amino acid doesn’t get made and a vital protein doesn’t fold—so into the dustbin of evolutionary history that viral version goes. Sometimes the mutation does nothing at all, because different sequences that encode the same proteins make up for the error. But every once in a while, mutations go perfectly right. The changes don’t affect the virus’s ability to exist; instead, they produce a helpful change, like making the virus unrecognizable to a person’s immune defenses. When that allows the virus to evade antibodies generated from past infections or from a vaccine, that mutant variant of the virus is said to have “escaped.”
Scientists are always on the lookout for signs of potential escape. That’s true for SARS-CoV-2, as new strains emerge and scientists investigate what genetic changes could mean for a long-lasting vaccine. (So far, things are looking okay.) It’s also what confounds researchers studying influenza and HIV, which routinely evade our immune defenses. So in an effort to see what’s possibly to come, researchers create hypothetical mutants in the lab and see if they can evade antibodies taken from recent patients or vaccine recipients. But the genetic code offers too many possibilities to test every evolutionary branch the virus might take over time. It’s a matter of keeping up.
Last winter, Brian Hie, a computational biologist at MIT and a fan of the lyric poetry of John Donne, was thinking about this problem when he alighted upon an analogy: What if we thought of viral sequences the way we think of written language? Every viral sequence has a sort of grammar, he reasoned—a set of rules it needs to follow in order to be that particular virus. When mutations violate that grammar, the virus reaches an evolutionary dead end. In virology terms, it lacks “fitness.” Also like language, from the immune system’s perspective, the sequence could also be said to have a kind of semantics. There are some sequences the immune system can interpret—and thus stop the virus with antibodies and other defenses—and some that it can’t. So a viral escape could be seen as a change that preserves the sequence’s grammar but changes its meaning.
Image Credit: Elena Lacey
Post by Amanda Scott, NA CEO. Follow her on twitter @tantriclens
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen
News
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]















