The need for innovative antimicrobial agents has become increasingly urgent due to the rise of antibiotic-resistant pathogens and the persistent threat of infections acquired during hospital stays.
Traditional antibiotics and antiseptics are often ineffective against these resilient microorganisms, leading to severe health complications and increased healthcare costs. Therefore, researchers are exploring alternative solutions that can effectively target and eliminate these harmful pathogens. A promising development is the creation of an intelligent “nanokiller” derived from a component of cinnamon essential oil, which offers a novel approach to combating these microbial threats.
A team of researchers from the Universitat Politècnica de València (UPV) and the CIBER de Bioingeniería, Biomaterials y Nanomedicine (CIBER-BBN) has harnessed the antimicrobial properties of cinnamaldehyde, a key component of cinnamon essential oil, to develop this innovative nanodevice. Their findings, published in the journal Biomaterials Advances, demonstrate the significant potential of this nanokiller in addressing various pathogenic microorganisms.
The newly developed nanodevice has shown remarkable efficacy against several dangerous pathogens, including Escherichia coli, Staphylococcus aureus, and Candida albicans. These pathogens are responsible for a range of infections, from foodborne illnesses and wastewater contamination to serious nosocomial infections. The ability to effectively eliminate these pathogens could revolutionise infection control in various settings, including healthcare facilities, food processing, and environmental management.
Escherichia coli, while typically harmless, includes strains that can cause severe abdominal cramps, acute diarrhoea, and vomiting. Staphylococcus aureus can lead to skin infections, bloodstream infections, osteomyelitis, and pneumonia. Candida albicans, a common fungus, is notorious for causing diseases such as candidemia and invasive candidiasis. The versatility of the nanokiller in targeting these diverse microorganisms highlights its potential as a comprehensive antimicrobial agent.
The team from the IDM-CIBER NanoSens group has outlined the practical applications of this nanokiller. “For example, we could create a spray, make a formulation based on water and other compounds, and apply it directly. We could make a water-based formulation in the field and spray it directly, like any pesticide today. And in hospitals, it could be applied on bandages, and we could even try to make a capsule that could be taken orally,” explains Andrea Bernardos, a researcher in the NanoSens group at the Inter-University Institute for Molecular Recognition Research and Technological Development (IDM).
The nanodevice’s efficacy is significantly higher compared to free cinnamaldehyde. The encapsulated form is approximately 52 times more effective against Escherichia coli, 60 times more effective against Staphylococcus aureus, and 7 times more effective against Candida albicans. This improvement is attributed to the reduced volatility of cinnamaldehyde when encapsulated in a porous silica matrix and the increased local concentration of the compound when released in the presence of microorganisms.
“The increase in the antimicrobial activity of the essential oil component is possible thanks to the decrease in its volatility due to its encapsulation in a porous silica matrix and the increase in its local concentration when released due to the presence of the microorganisms,” says Bernardos.
One of the most notable advantages of this nanokiller is its high antimicrobial activity at very low doses. The nanodevice enhances the properties of free cinnamaldehyde, reducing the biocidal dose by approximately 98% for bacterial strains (Escherichia coli and Staphylococcus aureus) and 72% for the yeast strain (Candida albicans).
“Moreover, this type of device containing natural biocides (such as essential oil components) whose release is controlled by the presence of pathogens could also be applied in fields such as biomedicine, food technology, agriculture, and many others,” concludes Ángela Morellá-Aucejo, also an IDM researcher at the Universitat Politècnica de València.
The development of this intelligent nanokiller represents a significant step forward in the fight against antibiotic-resistant pathogens and nosocomial infections. Its potential applications across various industries underscore the importance of continued research and innovation in antimicrobial technologies. By leveraging the natural properties of essential oils and advanced nanotechnology, this new approach could pave the way for more effective and sustainable antimicrobial strategies.
Author:
Kate Sivess-Symes
Content Producer and Writer
News
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]















