The need for innovative antimicrobial agents has become increasingly urgent due to the rise of antibiotic-resistant pathogens and the persistent threat of infections acquired during hospital stays.
Traditional antibiotics and antiseptics are often ineffective against these resilient microorganisms, leading to severe health complications and increased healthcare costs. Therefore, researchers are exploring alternative solutions that can effectively target and eliminate these harmful pathogens. A promising development is the creation of an intelligent “nanokiller” derived from a component of cinnamon essential oil, which offers a novel approach to combating these microbial threats.
A team of researchers from the Universitat Politècnica de València (UPV) and the CIBER de Bioingeniería, Biomaterials y Nanomedicine (CIBER-BBN) has harnessed the antimicrobial properties of cinnamaldehyde, a key component of cinnamon essential oil, to develop this innovative nanodevice. Their findings, published in the journal Biomaterials Advances, demonstrate the significant potential of this nanokiller in addressing various pathogenic microorganisms.
The newly developed nanodevice has shown remarkable efficacy against several dangerous pathogens, including Escherichia coli, Staphylococcus aureus, and Candida albicans. These pathogens are responsible for a range of infections, from foodborne illnesses and wastewater contamination to serious nosocomial infections. The ability to effectively eliminate these pathogens could revolutionise infection control in various settings, including healthcare facilities, food processing, and environmental management.
Escherichia coli, while typically harmless, includes strains that can cause severe abdominal cramps, acute diarrhoea, and vomiting. Staphylococcus aureus can lead to skin infections, bloodstream infections, osteomyelitis, and pneumonia. Candida albicans, a common fungus, is notorious for causing diseases such as candidemia and invasive candidiasis. The versatility of the nanokiller in targeting these diverse microorganisms highlights its potential as a comprehensive antimicrobial agent.
The team from the IDM-CIBER NanoSens group has outlined the practical applications of this nanokiller. “For example, we could create a spray, make a formulation based on water and other compounds, and apply it directly. We could make a water-based formulation in the field and spray it directly, like any pesticide today. And in hospitals, it could be applied on bandages, and we could even try to make a capsule that could be taken orally,” explains Andrea Bernardos, a researcher in the NanoSens group at the Inter-University Institute for Molecular Recognition Research and Technological Development (IDM).
The nanodevice’s efficacy is significantly higher compared to free cinnamaldehyde. The encapsulated form is approximately 52 times more effective against Escherichia coli, 60 times more effective against Staphylococcus aureus, and 7 times more effective against Candida albicans. This improvement is attributed to the reduced volatility of cinnamaldehyde when encapsulated in a porous silica matrix and the increased local concentration of the compound when released in the presence of microorganisms.
“The increase in the antimicrobial activity of the essential oil component is possible thanks to the decrease in its volatility due to its encapsulation in a porous silica matrix and the increase in its local concentration when released due to the presence of the microorganisms,” says Bernardos.
One of the most notable advantages of this nanokiller is its high antimicrobial activity at very low doses. The nanodevice enhances the properties of free cinnamaldehyde, reducing the biocidal dose by approximately 98% for bacterial strains (Escherichia coli and Staphylococcus aureus) and 72% for the yeast strain (Candida albicans).
“Moreover, this type of device containing natural biocides (such as essential oil components) whose release is controlled by the presence of pathogens could also be applied in fields such as biomedicine, food technology, agriculture, and many others,” concludes Ángela Morellá-Aucejo, also an IDM researcher at the Universitat Politècnica de València.
The development of this intelligent nanokiller represents a significant step forward in the fight against antibiotic-resistant pathogens and nosocomial infections. Its potential applications across various industries underscore the importance of continued research and innovation in antimicrobial technologies. By leveraging the natural properties of essential oils and advanced nanotechnology, this new approach could pave the way for more effective and sustainable antimicrobial strategies.
Author:
Kate Sivess-Symes
Content Producer and Writer

News
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]