A team of international researchers led by Prof Martin Hegner, Investigator in CRANN and Trinity’s School of Physics developed an automated diagnostic platform that indicates bleeding – and thrombotic risks in one drop of blood within seconds (Nanoscale, “Towards personalised rapid label free miRNA detection for cancer and liver injury diagnostics in cell lysates and blood based samples”).
They exploit micro-resonators for real-time measurements of the evolving blood plasma clot strength. Along with the clinically measured clotting time, other parameters, from specific factor deficiency to global coagulation parameters to assess fibrinolysis, can be extracted.
These technical developments now open up the possibility to introduce a miniaturized global haemostasis assay with capability to fine-tune anti-coagulation therapies.
In collaboration with the multinational Hoffman-la-Roche they report a novel strategy for quick, reliable and quantitative diagnostics of expression patterns of non-coding short RNA in blood plasma or cell cultures. They directly detect label-free specific miRNA biomarkers relevant to cancer and adverse drug effects in blood-based samples (right image).

Image Credit: CRANN
News This Week
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
Leave A Comment