Artificial Spin Glass Containing Nanomagnets, Likely To Be a Breakthrough in AI
Artificially manufacturing a rare kind of substance known as spin glass, according to a new study, might usher in a new era in artificial intelligence by enabling algorithms to be printed as physical hardware. The peculiar features of spin glass allow a type of AI that, like the brain, can distinguish objects from incomplete images and possess the potential for low-power computing, among other things.
Our work accomplished the first experimental realization of an artificial spin glass consisting of nanomagnets arranged to replicate a neural network. Our paper lays the groundwork we need to use these physical systems practically.
Michael Saccone, Study Lead Author and Post-doctoral Researcher, Theoretical Physics, Los Alamos National Laboratory
The study was published in the journal Nature Physics.
Spin glasses are a mathematical approach to thinking about material structure. Saccone explained that being able to alter the interaction within these systems using electron-beam lithography for the very first time allows for the representation of a range of computing issues in spin-glass networks.
Spin-glass systems are a form of a disordered system of nanomagnets that arise from random connections and competition between two types of magnetic order in the material. They are found at the junction of engineered materials and computation.
When their temperature decreases, they exhibit “frustration,” which means they do not settle into an evenly ordered arrangement, and they have different thermodynamic and dynamic properties that can be used in computer applications.
Theoretical models describing spin glasses are broadly used in other complex systems, such as those describing brain function, error-correcting codes, or stock-market dynamics. This wide interest in spin glasses provides strong motivation to generate an artificial spin glass.
Michael Saccone, Study Lead Author and Post-doctoral Researcher, Theoretical Physics, Los Alamos National Laboratory
The study team integrated theoretical and experimental investigation, to build and analyze the artificial spin glass as a proof-of-principle Hopfield neural network, which mathematically simulates associative memory helping regulate the instability of the artificial spin systems.
Both spin glass and Hopfield networks have evolved in a symbiotic relationship, with one field feeding the other. Associative memory connects two or more memory patterns associated with an item, whether in a Hopfield network or other types of neural networks.
The network can recollect the entire face if only one memory is activated — for example, by getting a partial image of a face as input. Associative memory, unlike more standard algorithms, does not demand a completely identical circumstance to detect memory.
These networks’ memories are similar to the ground states of a spin system, and they are less affected by noise than other neural networks.
Saccone and his team’s research verified that the material was a spin glass, providing proof that will enable them to explain the system’s attributes and how it processes data. Spin glass AI algorithms would be “messier” than standard algorithms, but more versatile for particular AI applications, according to Saccone.
The research was funded by the Laboratory Directed Research and Development program at Los Alamos National Laboratory.
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]