Does the advent of machine learning mean the classic methodology of hypothesize, predict and test has had its day?

Isaac Newton apocryphally discovered his second law – the one about gravity – after an apple fell on his head. Much experimentation and data analysis later, he realised there was a fundamental relationship between force, mass and acceleration. He formulated a theory to describe that relationship – one that could be expressed as an equation, F=ma – and used it to predict the behaviour of objects other than apples. His predictions turned out to be right (if not always precise enough for those who came later).

Contrast how science is increasingly done today. Facebook’s machine learning tools predict your preferences better than any psychologist. AlphaFold, a program built by DeepMind, has produced the most accurate predictions yet of protein structures based on the amino acids they contain. Both are completely silent on why they work: why you prefer this or that information; why this sequence generates that structure.

You can’t lift a curtain and peer into the mechanism. They offer up no explanation, no set of rules for converting this into that – no theory, in a word. They just work and do so well. We witness the social effects of Facebook’s predictions daily. AlphaFold has yet to make its impact felt, but many are convinced it will change medicine.

Somewhere between Newton and Mark Zuckerberg, theory took a back seat. In 2008, Chris Anderson, the then editor-in-chief of Wired magazine, predicted its demise. So much data had accumulated, he argued, and computers were already so much better than us at finding relationships within it, that our theories were being exposed for what they were – oversimplifications of reality. Soon, the old scientific method – hypothesize, predict, test – would be relegated to the dustbin of history. We’d stop looking for the causes of things and be satisfied with correlations.

With the benefit of hindsight, we can say that what Anderson saw is true (he wasn’t alone). The complexity that this wealth of data has revealed to us cannot be captured by theory as traditionally understood. “We have leapfrogged over our ability to even write the theories that are going to be useful for description,” says computational neuroscientist Peter Dayan, director of the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. “We don’t even know what they would look like.”

But Anderson’s prediction of the end of theory looks to have been premature – or maybe his thesis was itself an oversimplification. There are several reasons why theory refuses to die, despite the successes of such theory-free prediction engines as Facebook and AlphaFold. All are illuminating, because they force us to ask: what’s the best way to acquire knowledge and where does science go from here?

The first reason is that we’ve realised that artificial intelligences (AIs), particularly a form of machine learning called neural networks, which learn from data without having to be fed explicit instructions, are themselves fallible. Think of the prejudice that has been documented in Google’s search engines and Amazon’s hiring tools.

The second is that humans turn out to be deeply uncomfortable with theory-free science. We don’t like dealing with a black box – we want to know why.

And third, there may still be plenty of theory of the traditional kind – that is, graspable by humans – that usefully explains much but has yet to be uncovered.

So theory isn’t dead, yet, but it is changing – perhaps beyond recognition. “The theories that make sense when you have huge amounts of data look quite different from those that make sense when you have small amounts,” says Tom Griffiths, a psychologist at Princeton University.

Griffiths has been using neural nets to help him improve on existing theories in his domain, which is human decision-making. A popular theory of how people make decisions when economic risk is involved is prospect theory, which was formulated by behavioural economists Daniel Kahneman and Amos Tversky in the 1970s (it later won Kahneman a Nobel prize). The idea at its core is that people are sometimes, but not always, rational…..

Read the Article

News

Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy

Cell membrane-coated nanoparticles, applied in targeted drug delivery strategies, combine the intrinsic advantages of synthetic nanoparticles and cell membranes. Although stem cell-based delivery systems were highlighted for their targeting capability in tumor therapy, inappropriate [...]

Self-Healable, Human-Like Artificial Skin

Self-healable ionic sensing materials with fatigue resistance are imperative in robotics and soft electronics for extended service life. The existing artificial ionic skins with self-healing capacity were prepared by network reconfiguration, constituting low-energy amorphous [...]