A centuries-old architectural technique has inspired a new method for tailoring nanoscale windows in metal-organic frameworks (MOFs), with potential applications in gas separation and medical fields.
A centuries-old technique for constructing arched stone windows has inspired a new way to form tailored nanoscale windows in porous functional materials called metal-organic frameworks (MOFs).
The method uses a molecular version of an architectural arch-forming “centering formwork“ template to direct the formation of MOFs with pore windows of predetermined shape and size. New MOFs designed and made in this way range from narrow-windowed materials with gas separation potential to larger-windowed structures with potential medical applications due to their excellent oxygen-adsorption capacity.
The starting point of the research was a zeolite-like MOF (ZMOF), which usually features pentagonal windows framed by building blocks called supertetrahedra (ST). “Our goal was to control ST arrangement to change from this well-known topology to one not reported before with these building blocks,” Sapianik says.
The team developed centering structure-directing agents (cSDA) to control ST alignment and form ZMOF windows of new shapes and sizes. One set of cSDAs, designed to tighten the angle between adjoining ST units, created small windows. Another set, designed to expand the angle between ST units, gave larger windows.
“MOF pore size and volume are important parameters that affect their application,” says Marina Barsukova, a postdoc in Eddaoudi’s team. One large-windowed ZMOF the team designed, Fe-sod-ZMOF-320, showed the highest oxygen adsorption capacity of any MOF known. “This property is important in the medical and aerospace industries, where the high capacity would increase oxygen storage in a cylinder, or enable smaller cylinders for easier transport,” Barsukova says. The same ZMOFs also performed well for storage of methane and hydrogen, which are potential fuels. Other ZMOFs in the family with narrow windows showed potential for gas separation of molecular mixtures.
The cSDA concept offers multiple benefits enhancing MOF performance, says Vincent Guillerm, a research scientist in Eddaoudi’s group. “The cSDA partitions big windows into smaller ones, which our preliminary results suggest will be useful for chemical separations,” he says. “It also offers additional internal pore surface, which can help to improve gas storage, and reinforces the MOF framework, which should improve the material’s stability,” he adds.
“The centering approach we have developed is another powerful strategy in the repertoire of reticular chemistry, offering great potential for made-to-order MOFs for applications in energy security and environmental sustainability,” Eddaoudi says.
Reference: “Face-directed assembly of tailored isoreticular MOFs using centring structure-directing agents” by Marina Barsukova, Aleksandr Sapianik, Vincent Guillerm, Aleksander Shkurenko, Aslam C. Shaikh, Prakash Parvatkar, Prashant M. Bhatt, Mickaele Bonneau, Abdulhadi Alhaji, Osama Shekhah, Salvador R. G. Balestra, Rocio Semino, Guillaume Maurin and Mohamed Eddaoudi, 2 October 2023, Nature Synthesis.
DOI: 10.1038/s44160-023-00401-8

News
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]
Cyborg tadpoles are helping us learn how brain development starts
How does our brain, which is capable of generating complex thoughts, actions and even self-reflection, grow out of essentially nothing? An experiment in tadpoles, in which an electronic implant was incorporated into a precursor [...]