New drugs made from nanoparticles that can easily penetrate any interface within our bodies are a great hope in medicine. For such hopefuls to reach the market, their safety must be ensured. In this context, it must also be clarified what happens if a substance manages to penetrate the natural barrier between baby and mother, the placenta, in the body of pregnant women. | |
“Environmental toxins can also pose a major threat to the sensitive fetus if they penetrate the placental barrier or disrupt the development and function of the placenta, thus indirectly harming the fetus,” explains Tina Bürki, Empa researcher at the Particles-Biology Interactions lab in St. Gallen. | |
A team from Empa and ETH Zurich has been working for some time on the question of how this so-called embryotoxicity of substances can be determined precisely, simply and reliably. Now the team is developing a new system that will detect embryo-damaging substances without the need for animal testing. The recently launched project is funded by the Zurich-based ProCare Foundation. |
A universe in a polymer case |
|
At the heart of the process will be a polymer chip, about the length of a human finger, that houses a small universe: Human cells grow on the chip that are to model the placental barrier and the embryo under conditions that are as close to reality as possible. For this purpose, cells of the placenta are cultivated on a porous membrane to form a dense barrier, and embryonic stem cells are formed into a tiny tissue sphere in a drop of nutrient solution. | |
To simulate blood circulation, a shaker continuously tilts the chip back and forth. Test substances can be added to the maternal side of the placenta. This allows the researchers to study the transport of the test substance and the effects on both tissues. | |
“We already know that such a test system can work, as a simplified prototype was developed during a preliminary study with the Bio-engineering lab at ETH Zurich,” says Bürki. | |
What is special about this new chip is that the researchers want to improve the cell models by replacing the previously used laboratory cell lines or mouse cells with so-called primary human cells and a human stem cell line. | |
“We are working closely with the gynecological clinic of the Cantonal Hospital of St. Gallen and can isolate the cells we are looking for from placental tissue that would otherwise be discarded after birth,” Bürki explains. | |
The cells will be used to develop an improved three-dimensional placenta model. Ultimately, the embryo-placenta chip will allow the interaction of placenta and embryo to be reproduced and transport processes at the placenta as well as direct and indirect harmful effects of a substance on embryonic development to be investigated. | |
Alternative model advantageous |
|
Studies on the developmental toxicity of drugs and environmental toxins currently rely on animal experiments with pregnant mice. In the EU, for example, 840,000 animals were used in toxicity and safety research in 2017, of which nearly 100,000 were used for developmental toxicity. Thanks to the new chip, the number of these animal experiments could be significantly reduced. | |
This is not only an important goal from an ethical point of view, because the significance of a test with pregnant mice is not optimal for assessing drug safety in humans: “The placenta has a very specific structure in each species – and in mice it is correspondingly different from that in humans,” says Empa researcher Bürki. | |
Better insights can be gained from the alternative in vitro model, i.e. the new system “in the test tube”, because the new chip technology with primary human cells can more reliably map what happens at the interface between mother and child. |
Accelerating new therapies |
|
The new test system is intended as a simple and precise way to check the safety of a substance early in the development of new drugs and thus accelerate the application of new therapies. In this way, the chip supports the safe-by-design principle, which envisions the early integration of safety aspects into the innovation process. | |
The need for developmental toxicity studies in industry is also increasing for another reason: The safety of chemicals and particles in the environment needs to be clarified, as required by the current REACH chemicals regulation. “The placenta embryo chip should ultimately be a user-friendly test kit that can provide important data on potential health risks during pregnancy,” she said. | |
The project’s results are also expected to help fill knowledge gaps in understanding the placental barrier. “The chip will be a model that brings together the processes at the placenta and in the embryo. In this way, we hope to better understand the complex interactions that take place by means of signaling substances in the future,” says Tina Bürki. |

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]