Finding out you have cancer is bad enough, but to then have to go to hospital for a painful and invasive biopsy to try to identify the exact type of tumor can be deeply traumatic.

But that may soon be a thing of the past: new, cheap devices the size of a silicon chip could provide the same information from a simple urine test in the doctor’s surgery, say the authors of a new review of microfluidic devices.

Better yet, these tiny devices, based on networks of fluid channels thinner than human hairs, have the potential to distinguish between different strains of the same cancer, enabling personalized treatment.

“If you isolate some cells and expose them to drug candidates you can predict the response of the patient in advance,” says Ciprian Iliescu, a researcher at IMT-Bucharest in Romania and co-author of a paper in the journal Biomicrofluidics.

“Then you can track how the tumor is evolving in response to treatment.”

One of the biggest challenges treating cancer is its diversity. There are more than 100 known cancers, with each having its own biomarkers; for example, specific proteins, cells or even fragments of the tumor.

Although the biomarkers may be only tiny traces in the blood, researchers around the world are developing myriad methods to sift through and identify the many different species.

The devices direct the bodily fluids into complex structures such as forked flow channels, pillars, spirals and pools to process them.

Image Credit:  Alias Studio

Read more at cosmosmagazine.com

News This Week

New, better coronavirus rapid test

Researchers at the Paul Scherrer Institute PSI and the University of Basel have developed a rapid test for COVID-19. Its novel functional principle promises reliable and quantifiable results concerning a patient's COVID-19 disease and [...]

Nanocomposite Hydrogel Improves Bone Repair Treatment

Innovative researchers have investigated the potential of incorporating a gelatin methacryloyl hydrogel functionalized with synthetic nanoclay laponite to improve the delivery of osteoblast derived extracellular vesicles for increased bone repair. This research has been [...]

Applying Nanoemulsions to the Food Sector

Nanoemulsions are a relatively new technology that has found significant use for delivering functional chemicals such as micronutrients, flavorings, bioactive molecules, and antimicrobial agents into food and beverage products. This article focuses on applying [...]