University of Seville researchers, in collaboration with the University of Nottingham, have managed to create the first image of nanoparticles of stabilised gold with biodegradable and biocompatible systems that have been obtained with 3D-printng techniques. The image chosen for this test was the logo of the University of Seville.

This achievement will have applications in the pharmaceutical industry, such as in the preparation of biocompatible biosensors based in gold, which have already been shown to be effective in the detection of carcinogenic cells and tumour biomarkers. In recent years, additive manufacturing, also commonly known as 3D printing, has been recognised as the ideal technology for applications that require intricate geometries or personalisation. Its manufacturing based on layers will reduce general small-batch manufacturing costs in comparison with traditional production methods. This has caught the attention of the pharmaceutical industry, which has seen a gateway to the total personalisation of treatment in this technology.

The research was centred on the technique called inkjet printing. This offers advantages such as its high resolution and the possibility it offers of being able to print more than one material during the same printing process. Using this technique, the researchers have proposed the manufacturing of systems that could potentially be used as personalised biosensors based on the conductivity and biocompatibility of gold.

Currently, existing gold inks for Inkjet Printing are based in nanoparticles of this metal, but they are highly unstable, as they bind together easily and are difficult to print. For that reason, the development of stale gold inks that are easy to print with has been invaluable.

Image Credit:  Nottingham University and University of Seville

News This Week

Does Space-Time Really Exist?

Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]

Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy

A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]

Nanomotors: Where Are They Now?

First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]