A new 3D printing technology makes the production of complex metallic objects at the nanoscale possible. A team of chemists led by a scientist from the University of Oldenburg has developed an electrochemical technique that can be used to make objects out of copper just 25 nanometres in diameter. | |
The new technique is based on the well-known process of electroplating, the team reports in the journal Nano Letters (“Bringing Electrochemical Three-Dimensional Printing to the Nanoscale”). |
In recent years 3D printing, also known as additive manufacturing, has established itself as a promising new manufacturing process for a wide variety of components. Dr Dmitry Momotenko, a chemist at the University of Oldenburg, has now succeeded in fabricating ultrasmall metal objects using a new 3D printing technique. | |
In a paper published together with a team of researchers from ETH Zurich (Switzerland) and Nanyang Technological University (Singapore) in the scientific journal Nano Letters, he reports that the technique has potential applications in microelectronics, sensor technology and battery technology. | |
The team has developed an electrochemical technique that can be used to make objects out of copper just 25 billionths of a metre (equivalent to 25 nanometres) in diameter. For comparison, a human hair is about 3000 times thicker than the filigree nanostructures. | |
The new printing technique is based on the comparatively simple and well-known process of electroplating. In electroplating, positively charged metal ions are suspended in a solution. When the liquid comes into contact with a negatively charged electrode, the metal ions combine with the electrons in the electrode to form neutral metal atoms which are then deposited on the electrode and gradually form a solid metal layer. | |
“In this process, a solid metal is fabricated from a liquid salt solution – a process that we electrochemists can control very effectively,” says Momotenko. | |
For his nanoprinting technique he uses a solution of positively charged copper ions in a tiny pipette. The liquid emerges from the tip of the pipette through a print nozzle. In the team’s experiments the nozzle opening had a diameter of between 253 and 1.6 nanometres. Only two copper ions can pass through such a tiny opening simultaneously. | |
The biggest challenge for the scientists was that as the metal layer grows, the opening of the print nozzle tends to get clogged. To prevent this the team developed a technique for monitoring the progress of the printing process. | |
They recorded the electrical current between the negatively charged substrate electrode and a positive electrode inside the pipette and then the movement of the nozzle was adjusted accordingly in a fully automated process: the nozzle approached the negative electrode for a very short time and then retracted as soon as the metal layer had exceeded a certain thickness. Using this technique, the researchers gradually applied one copper layer after another to the electrode’s surface. | |
Thanks to the extremely precise positioning of the nozzle they were able to print both vertical columns and inclined or spiral nanostructures, and even managed to produce horizontal structures by simply changing the printing direction. | |
They were also able to control the diameter of the structures very precisely – firstly through the choice of print nozzle size and secondly during the actual printing process on the basis of electrochemical parameters. According to the team, the smallest possible objects that can be printed using this method have a diameter of about 25 nanometres, which is equivalent to 195 copper atoms in a row. | |
That means that with the new electrochemical technique it is possible to print far smaller metal objects than have ever been printed before. 3D printing using metal powders, for example – a typical method for 3D printing of metals – can currently achieve a resolution of about 100 micrometres. | |
The smallest objects that can be produced using this method are therefore 4,000 times larger than those in the current study. Although even smaller structures can be produced using other techniques, the choice of potential materials is limited. | |
“The technology we are working on combines both worlds – metal printing and nanoscale precision,” says Momotenko. Just as 3D printing has sparked a revolution in the production of complex larger components, additive manufacturing at the micro- and nanoscales could make it possible to fabricate functional structures and even devices with ultrasmall dimensions, he explains. | |
“3D-printed catalysts with high surface area and special geometry to allow particular reactivity could be prepared for the production of complex chemicals,” says Momotenko. Three-dimensional electrodes could make electrical energy storage more efficient, he adds. | |
The chemist and his team are currently working towards this very goal: in their NANO-3D-LION project they aim to drastically increase the surface area of electrodes and reduce distances between the cathode and the anode in lithium-ion batteries through 3D printing, in order to speed up the charging process. |
Source: Carl von Ossietzky-Universität Oldenburg |

News
How can Nanotechnology be Used to Reverse Skin Aging?
Although skin aging has not been related to many health complications, it has aesthetic issues. Some of the common symptoms of skin aging are changes in the skin texture (rough, dry, and itchy), discoloration, [...]
Emission of Fe- and Ti-Containing Nanoparticles from Coal-Fired Power Plants
In an article published in the journal Science of the Total Environment, researchers have highlighted the significance and potential risks associated with the release of nanoparticles from coal-fired power plants. Applying the single-particle inductively coupled plasma mass [...]
Covalent Organic Framework Nanofluidic Hybrid Membrane for Osmotic Energy Generation
A paper recently published in the journal ACS Applied Energy Materials demonstrated the feasibility of using a covalent organic framework (COF)-based nanofluidic hybrid membranes (NHMs) to attain enhanced interfacial ion transport for the generation of osmotic [...]
Degradable Nanocomposite Removes Antibiotics from Contaminated Water
The excess fluoroquinolones (FQs) discharged into the aquatic environment due to human activities must be removed cost-effectively. In an article published in the Journal of Cleaner Production, the authors fabricated an environment-friendly dealkaline lignin-grafted Fe3O4 nanoparticles [...]
Light-controlled reactions at the nanoscale
Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation and breaking of molecular [...]
Bright Future for Nanophotonic Chips with Topological Rainbow Device
A paper recently published in the journal Nature Communications demonstrated an effective method to realize on-chip nanophotonic topological rainbow devices using the concept of synthetic dimensions. Importance of Synthetic Dimensions for the Construction of Topological Nanophotonics [...]
Green Approach to Silver Nanoparticle Fabrication with Citrus Fruits
In a study available in the journal Materials Today: Proceedings, silver nanoparticles (Ag NPs) were fabricated using a green method using Citrus X sinensis. Methylthioninium Chloride (MB) Dyes Threatening the Environment Dye and sewage drainage into [...]
Coronavirus ‘ghosts’ found lingering in the gut
Scientists are studying whether long COVID could be linked to viral fragments found in the body months after initial infection. In the chaos of the first months of the coronavirus pandemic, oncologist and geneticist [...]
Experts perplexed over number of people getting long COVID
Public health experts are divided over how many people are getting long COVID-19, a potentially debilitating condition that comes after a patient has recovered from the coronavirus. Ill effects from the condition can include [...]
Four strange COVID symptoms you might not have heard about
Well over two years into the pandemic, hundreds of thousands of COVID cases continue to be recorded around the world every day. With the rise of new variants, the symptoms of COVID have also evolved. Initially, [...]
A new method for exploring the nano-world
Nanoparticles are everywhere. They are in our body as protein aggregates, lipid vesicles, or viruses. They are in our drinking water in the form of impurities. They are in the air we breath as [...]
Breast Cancer Drug Resistance Tackled By Polymer Nanoparticles
Drug resistance is a common phenomenon, with drugs becoming less and less effective as their usage increases. To address this issue, a novel technique employing conjugated polymer-based nanoparticles is presented in the study published [...]
New imaging method makes microrobots visible in the body
Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-sized microrobots individually and at [...]
Multifunctional Nanocrystals Enhance Cancer Cell Killing Therapies
Scientists have recently developed multifunctional hexagonal NaxWO3 nanocrystals that can serve as microwave sensitizers to kill cancer cells as well as improve the overall chemodynamic therapy (CDT). This study is available as a pre-proof in Chemical Engineering Journal. [...]
Biotech, nanomedicine, and AI combine for health breakthrough predicted by Apple genius Steve Jobs
Apple’s visionary founder, the late Steve Jobs once said, “the biggest innovations of the 21st century will be at the intersection of biology and technology”. And that prediction is coming true in the drug [...]
Making chemical separation more eco-friendly with nanotechnology
Chemical separation processes are essential in the manufacturing of many products from gasoline to whiskey. Such processes are energetically costly, accounting for approximately 10–15 percent of global energy consumption. In particular, the use of [...]