A team of researchers has developed a novel water filtration system that combines nanotechnology with 3D printing, aiming to create a low-cost, sustainable solution for greywater treatment. As reported in Micro & Nano Letters, the study demonstrates this with a honeycomb-structured filter made from 3D-printed recycled nylon, coated with titanium dioxide (TiO2) nanoparticles.
Nanomaterials such as TiO2 are often studied in water treatment for their photocatalytic and antimicrobial properties, as well as their large surface area. These characteristics enable them to degrade organic pollutants and neutralize pathogens effectively.
However, it can be difficult to integrate such materials into practical, long-lasting filtration systems. Traditional membranes often suffer from fouling, limited operational lifespan, and high manufacturing costs.
To address this, the researchers used fused filament fabrication (FFF), a 3D printing technique that allows precise control over filter geometry. This approach enables the design of customizable, reusable filtration units that capitalize on the benefits of nanomaterials while improving mechanical stability and ease of production.
Fabricating the Filters
The team used FFF to print honeycomb-shaped modules from recycled nylon filament, and then applied the TiO2 nanoparticles via spin-coating.
This method was chosen to improve clogging behaviour and increase contaminant retention. The honeycomb design was intended to create a tortuous flow path, improving filtration through both dead-end and depth filtration modes.
Once fabricated, the filters were subjected to mechanical testing, porosity analysis, and nanomaterial distribution checks. Their performance was then assessed by passing greywater through the filters in dead-end and depth filtration modes.
Key metrics evaluated included turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and microbial removal efficiency. Although the photocatalytic potential of TiO2 was factored into the analysis, it wasn’t extensively tested under real-world lighting conditions.
The study also examined filter fouling across cycles, overall stability, and possible regeneration techniques, focusing on how nanomaterial integration affects performance and durability over time.
Performance And Limitations
The nanocomposite filters showed significant improvements in removing organic contaminants and inactivating microbes compared to plain nylon filters. This enhancement was largely attributed to TiO2’s photocatalytic activity, which helps break down organic compounds and generate reactive oxygen species capable of degrading biofilms.
In initial cycles, the coated filter achieved removal rates of up to 85 % for BOD and 80 % for COD in dead-end mode. Depth filtration yielded slightly lower removal efficiencies of 80 % BOD and 75 % COD. After five filtration cycles, these figures dropped to 58 % for BOD and 50 % for COD, indicating sustained, though diminishing, performance over time.
Importantly, the addition of TiO2 did not compromise the mechanical strength of the nylon filters, which retained structural integrity across multiple filtration cycles. The filters also exhibited increased resistance to fouling, which is a common issue in membrane systems, thanks to self-cleaning TiO2.
Despite this, the system struggled to reduce turbidity and TSS to levels required for potable water. Larger particles often passed through due to the relatively large pore size and open-cell architecture of the honeycomb design, which favours flow efficiency over fine particulate capture.
The findings suggest that further refinement is needed, such as finer pore structures or a multilayer filtration approach, to improve filtration precision and consistency.
Future Directions
The study demonstrates the impressive performance when combining nanomaterials with 3D printing for filtration systems, especially in decentralized or resource-limited settings. The integration of TiO2 not only boosts contaminant removal but also enhances the filter’s durability and reusability.
Yet, to fully meet potable water standards, further optimization is still needed. This includes refining the filters to improve their long-term performance under real-world conditions.
The research indicates the future of nanotechnology in water treatment, with practical applications in regions where traditional infrastructure may be lacking. Continued investigation into nanocomposite materials and scalable fabrication techniques will be key to turning these lab-scale innovations into everyday applications.
Journal Reference
Saha S. K., et al. (2025). Fused filament fabrication of recycled nylon‐TiO₂ honeycomb filters for greywater treatment. Micro & Nano Letters, 1–18. DOI: 10.1002/mna2.70009, https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/mna2.70009
News
Deadly Pancreatic Cancer Found To “Wire Itself” Into the Body’s Nerves
A newly discovered link between pancreatic cancer and neural signaling reveals a promising drug target that slows tumor growth by blocking glutamate uptake. Pancreatic cancer is among the most deadly cancers, and scientists are [...]
This Simple Brain Exercise May Protect Against Dementia for 20 Years
A long-running study following thousands of older adults suggests that a relatively brief period of targeted brain training may have effects that last decades. Starting in the late 1990s, close to 3,000 older adults [...]
Scientists Crack a 50-Year Tissue Mystery With Major Cancer Implications
Researchers have resolved a 50-year-old scientific mystery by identifying the molecular mechanism that allows tissues to regenerate after severe damage. The discovery could help guide future treatments aimed at reducing the risk of cancer [...]
This New Blood Test Can Detect Cancer Before Tumors Appear
A new CRISPR-powered light sensor can detect the faintest whispers of cancer in a single drop of blood. Scientists have created an advanced light-based sensor capable of identifying extremely small amounts of cancer biomarkers [...]
Blindness Breakthrough? This Snail Regrows Eyes in 30 Days
A snail that regrows its eyes may hold the genetic clues to restoring human sight. Human eyes are intricate organs that cannot regrow once damaged. Surprisingly, they share key structural features with the eyes [...]
This Is Why the Same Virus Hits People So Differently
Scientists have mapped how genetics and life experiences leave lasting epigenetic marks on immune cells. The discovery helps explain why people respond so differently to the same infections and could lead to more personalized [...]
Rejuvenating neurons restores learning and memory in mice
EPFL scientists report that briefly switching on three “reprogramming” genes in a small set of memory-trace neurons restored memory in aged mice and in mouse models of Alzheimer’s disease to level of healthy young [...]
New book from Nanoappsmedical Inc. – Global Health Care Equivalency
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
New Molecule Blocks Deadliest Brain Cancer at Its Genetic Root
Researchers have identified a molecule that disrupts a critical gene in glioblastoma. Scientists at the UVA Comprehensive Cancer Center say they have found a small molecule that can shut down a gene tied to glioblastoma, a [...]
Scientists Finally Solve a 30-Year-Old Cancer Mystery Hidden in Rye Pollen
Nearly 30 years after rye pollen molecules were shown to slow tumor growth in animals, scientists have finally determined their exact three-dimensional structures. Nearly 30 years ago, researchers noticed something surprising in rye pollen: [...]
NanoMedical Brain/Cloud Interface – Explorations and Implications. A new book from Frank Boehm
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
















