- New research shows the W boson—a tiny particle fundamental to the formation of our universe—is heavier than scientists expected.
- This discovery goes against the Standard Model of particle physics, the framework scientists use to make sense of all observable matter.
- The 400-person team carefully sifted through 10 years' worth of data from more than four million collisions in a Fermilab particle accelerator.
The W boson, one of the tiniest, most elementary particles in the known universe is causing a big ruckus in the field of particle physics.
New findings about the particle, which is fundamental to the formation of the universe, suggest its mass may be far heavier than predicted by the Standard Model of particle physics—the theoretical "rulebook" that helps us make sense of the building blocks of matter. If true, it could signal a monumental shift in our understanding of the universe.
According to the Standard Model, W bosons (together with another particle, called Z bosons) are responsible for the weak nuclear force, one of the four forces that hold together all observable matter in the universe. The other forces include gravitational force (for which there is currently no explanation in the Standard Model), electromagnetic force, and the strong nuclear force.
Gravitational and electromagnetic forces work across large scales. Think: the sun's hold over distant planets, or the journey light from far-off stars makes across the universe. Weak and strong nuclear forces, however, interact with the tiniest objects in our universe and occur only within the nuclei of atoms. (Coincidentally, these are the forces responsible for generating radioactivity.)
The weak nuclear force is particularly important. It is responsible for, among other things, the process through which the sun forms helium from hydrogen, and is critical to the formation of our universe. "If it wasn't for this force, none of the heavy elements beyond hydrogen would form," Ashutosh Kotwal, a physicist at Duke University and one of the leaders of the experiment, tells Popular Mechanics. "It is crucial to our existence."
Scientists first predicted the W boson in the 1960s, but it wasn't until 1983 that a team of researchers at CERN (the European Council for Nuclear Research) proved its existence. (Both teams won Nobel Prizes for their work on the particle.) Since then, research teams have sought to precisely identify the mass of the W boson, a critical measurement that acts as a key parameter for the rest of the Standard Model's framework.
An international team of more than 400 researchers—collectively known as the Collider Detector at Fermilab Collaboration—worked together to analyze almost ten years of data collected from Fermilab's now-defunct Tevatron particle accelerator in Batavia, Illinois. And they have found something peculiar: the W boson mass measurement they report in their new paper, published today in the journal Science, is approximately 0.1 percent heavier than previous estimates.
The researchers were able to measure the mass of the W boson by smashing beams of protons and antiprotons together in a vacuum. These collisions generate a slew of different particles, but rarely produce a W boson. "We are not able to measure the W boson directly, in a sense, because it decays incredibly fast—in something like a trillionth of a trillionth of a second," Kotwal explains.
So, the team must analyze the remnants of the W boson, the particles it leaves behind in its wake. But only certain combinations of leftover particles can give scientists the data they need. In particular, Kotwal and his colleagues sought out collisions that produced two specific pairs of particles: either a muon and a neutrino, or an electron and a neutrino. (Muons, you may know, are the much, much heavier subatomic cousins of electrons. Neutrinos, affectionately known as ghost particles, are electrically neutral and have an impossibly small mass. An electron is, well, an electron.) By measuring the position and energy of these particle pairs, the team was able to determine the mass of the decayed W boson.
It's an incredibly difficult task, though. Out of the roughly 450 trillion collisions that the team observed between 2002 and 2011, only about four million collisions generated enough high-quality data about the W boson.
From this data, they estimate the new mass measurement of the W boson to be 80,433.5 ± 9.4 MeV/c2—a far-cry (in the realm of quantum mechanics, that is) from previous measurements, and from what the Standard Model suggests it should be. It is the most precise measurement recorded yet, the team reports, roughly twice as precise as previous calculations. David Toback, a physicist at Texas A&M University and a co-spokesperson for the 400-person team, likens it to precisely measuring the weight of an 800-pound gorilla to within one ounce.
Now, it's up to the scientific community to figure out exactly what these findings mean. It could mean, for instance, that there are previously undiscovered particles waiting to be discovered, or physical interactions entirely new to science. "It's remarkable how resistant nature is to revealing her secrets," Toback tells Popular Mechanics. "It's a wonderful chase, but it's absolutely maddening."
The next step, of course, will be to perform even more experiments and get confirmation of this measurement from an independent source. Toback is hopeful that the CMS and ATLAS experiments at CERNS's Large Hadron Collider in Geneva, Switzerland—each of which rely on the participation of thousands of scientists—will provide even more data in the near future, and, if we're lucky, some new insight.
News
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]















