Nanotechnology research offers a realistic and efficient method for reducing pesticide waste and enhancing pesticide consumption. A new publication in the journal ACS Agricultural Science & Technology discusses the development of chlorpyrifos-loaded silica nanomaterials enhanced with polydopamine (Cpf-MSNs@PDA) for intelligent pest management.
The release of chlorpyrifos from the hybrid composite was alkali- and heat-dependent, ensuring the effective constituent’s continuous and consistent efficacy over an extended period. The creation of an intelligent nanoparticle for the management of a specific plant diseases generates new ideas for organic farming.
Importance of Pesticides
Pesticides are critical for reducing and managing plant diseases, bugs, and weeds, which are necessary for agricultural production, repairing around 30% of worldwide crop damage. However, more than 90% of conventional pesticides infiltrate the ecosystem during the deposition process, resulting in environmental damage.
Presently, it is believed that developing a controlled-release pesticide technology would efficiently decrease pesticide wastage and increase pesticide consumption. With the advancement of nanomaterials and their widespread use in crop production, several novel pesticide compositions have been created, including nano caplets, nanoliposomes, and nanogels.
Various nanoparticles, including graphene oxide, charcoal, elastomer, and kaolin minerals, have been employed as pesticide carriers so far.
Mesoporous Silica Nanoparticles (MSNs) as Pesticide Carriers
Additionally, the conveniently synthesized surface morphology of MSNs enables the incorporation of adaptable substances or polymeric materials, enabling the development of a nanopesticide delivery mechanism that is responsive to external stimuli (such as pH, illumination, and heat) and thus enables the controlled release of pesticide elements.
Polydopamine (PDA): pH-Responsive Gatekeeper Molecule
To achieve the precise reaction of a nanopesticide to environmental stimuli, the nanocomposite’s surface layer is often altered with reactive gatekeeper molecules. Due to its excellent biological properties, high adhesion, and high photocatalytic effectiveness, polydopamine (PDA), a substance derived from mussels, has garnered significant interest. PDA’s superior film-forming capacity enables it to be uniformly deposited on the exterior of a wide variety of materials for general applications. Additionally, several studies have shown that PDA can be employed as a pH-responsive gatekeeper molecule to regulate drug delivery systems.
Development of an Intelligent Nanopesticide Composite
In this study, the researchers developed a smart nanopesticides compound based on a PDA-modified mesoporous silica nanocomposite (MSN) structure that helps pesticide particles to be released in response to an alkaline stimulus.
Chlorpyrifos (Cpf), a wide-spectrum organophosphate pesticide with dermal contact and gastro toxicity, was chosen as the prototype pesticide due to its widespread usage in farming to control pests. The release rate of Cpf was thoroughly investigated in the presence of pH and other biogenic triggers. Cpf-foliar MSNs@PDA’s adherence, rainfall-runoff tolerance, and pesticide effectiveness were also investigated to determine its durability.
Research Conclusion and Prospect
In conclusion, Cpf-MSNs@PDA, an alkali-triggered nanoscale pesticide combination, was developed in this work. The microporous morphology on the interface of the MSNs was restricted due to the containment of PDA, which limits the extraction efficiency of Cpf into the external environment.
To produce the alkaline-triggered discharge of Cpf-MSNs@PDA, PDA works as a pH-responsive barrier molecule. This novel composite was discovered to have outstanding foliar adherence and great rainfall erosion resistance in simulated testing, indicating that it can significantly prevent pesticide losses due to leaf slippage and rainfall runoff. The presence and degradability of pesticides in the midgut were established by inspection of the gastrointestinal tissue of M. separata, and the probable mechanism of Cpf-MSNs@PDA was established.
This research suggests a viable method for reducing pesticide wastage and contamination in the ecosystem. However, simulated results may not provide accurate physical results. Therefore, field studies should be conducted to improve the efficacy of nanopesticide compounds in the future.
News
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]















