In an article recently published in the journal Nanotechnology, researchers employed a single particle imaging method for fluorescence excitation with moderate intensity to achieve spatial resolution. Here, the semiconductor nanocrystals were accessed, whose emission lifetimes depended on excitation intensity.
Nanocrystals
The excited fluorophore’s de-excitation rate with optical modulation is an important tool to achieve super-resolution in microscopy techniques, including ground state depletion microscopy, stimulated emission depletion, or reversible saturable optical fluorescence transitions microscopy.
In organic dyes or fluorescent proteins, the excitation methods involve transition rate tailoring from a single excited to a ground state. However, semiconductor nanocrystals intrinsically possess multiple excited states, grey or charged states.
The excessive energy stored either in the nanocrystal core or trapped in the bulk of the nanocrystal or at its surface results in the origin of multiple states. Wavefunction overlap of an exciton with trapped charges can increase the non-radiative energy transfer probability from the exciton to the charge. Thus, the exciton’s excited-state lifetime decreases based on the location and amount of charge trapped within the particle.
Semiconductor Nanocrystals for Super-Resolution Imaging
In the present study, the researchers used the semiconductor nanocrystal’s excitation-intensity-dependent lifetime to increase the spatial imaging resolution beyond the diffraction limit. A single semiconductor nanocrystal was scanned through a confocal spot with a diffraction limit to modulate the excitation power density, which is maximum at the center and minimized towards the edges. Thus, several photo-generated excess charges in a particle can be modulated; consequently, its excited-state lifetime is also modulated.
The lifetime modulation relative to the position of a particle according to the focused laser allowed the enhancement of the spatial resolution in the scanned image of the nanocrystal. This was demonstrated by two close-by emitter images’ disentanglement, which remained unresolved in the intensity image. This method combined the simplicity and robustness of the measurement technique that combines the laser-scanning confocal microscope with fluorescence-lifetime measurement capability.
Research Findings
The researchers used cadmium selenium (CdSe) /cadmium sulfur (CdS) / thick-shell quantum dots (QDs); the shell thickness helped reduce fluorescence blinking. A transmission electron microscopy (TEM) image showed that the average particle size is in the range of 18 ± 2 nanometers, which included a CdS shell consisting of approximately 15 atomic layers. In this type of giant QDs, the interaction between excited-state carriers and surface trap states was weakened, further suppressing the non-radiative Auger recombination. Fluorescence blinking was suppressed by reducing the Auger efficiency and hot-carrier capture. If not suppressed, blinking could lead to patchy single-particle confocal scan images, which reduce the particle’s localization accuracy.
The radially polarized laser beam was used to scan semiconductor nanocrystals with the diffraction-limited focal spot. Herein, the radial polarization majorly led to axially polarized excitation of the approximate diameter of 180 nanometers at a wavelength of 640 nanometers. This enhanced the diffraction-limited resolution by approximately 1.4 times compared to a linearly polarized Gaussian beam.
Multichannel picosecond event timer-equipped confocal microscope was used for all fluorescence measurements, allowing fluorescence lifetime imaging. To focus the excitation light and collect the fluorescence light, a high numerical aperture objective was equipped for the system. As an excitation source, a white-light laser system with an acousto-optical tunable filter was used. A non-polarizing beam splitter reflected the excitation light towards the objective. Calculations for average excited state lifetime were performed by fitting the fluorescence decay curves with a multi-exponential decay model.
The characteristic intensity pattern, shown from the single quantum emitter’s recorded scan image depended on the orientation of the dipole moment of fluorophore’s excitation. However, the three-dimensional (3D) excitation isotropy of spherical semiconductor nanocrystals avoided the dependency of the excitation pattern on the orientation.
The semiconductor nanocrystal’s fluorescence lifetime that depended on the excitation power allowed the narrowing of the particle’s fluorescence lifetime image compared to the diffraction-limited intensity image.
The non-additivity of lifetimes depended on sigmoid curve steepness at its inflection point and the number of detected photons determining the fluorescence decay curve fitting quality. Further, the non-additivity of lifetimes resulted in the resolution enhancement. However, both curve steepness and photons quantity depended on the experimental conditions, including QD’s optical properties and microscope parameters.
Conclusion
In conclusion, the researchers presented the proof-of-principle measurements for semiconductor nanocrystal excitation-intensity-dependent, lifetime modulation-based, super-resolution imaging method. They showed that this method allowed to achieve a ten times resolution at moderate fluorescence intensities, which further could be enhanced by more photons collection.
This method employed a conventional fluorescence-lifetime confocal microscope based on semiconductor nanocrystal’s fluorescence lifetime imaging to access a broad fluorescence microscopy community. Although the present work involved the excitation by using a radially polarized laser beam, a linearly polarized Gaussian beam can also be used for excitation with minimized focus diameter.

News
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]