
The next generation of phones and wireless devices are going to need new antennae to access higher and higher frequency ranges. One way to make antennae that work at tens of gigahertz — the frequencies needed for 5G and higher devices — is to braid filaments about 1 micrometer in diameter. But today’s industrial fabrication techniques won’t work on fibers that small. | |
Now a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has developed a simple machine that uses the surface tension of water to grab and manipulate microscopic objects, offering a potentially powerful tool for nanoscopic manufacturing. |
The research is published in Nature (“3D-printed machines that manipulate microscopic objects using capillary forces”). | |
“Our work offers a potentially inexpensive way to manufacture microstructured and possibly nanostructured materials,” said Vinothan Manoharan, the Wagner Family Professor of Chemical Engineering and Professor of Physics at SEAS and senior author of the paper. “Unlike other micromanipulation methods, like laser tweezers, our machines can be made easily. We use a tank of water and a 3D printer, like the ones found at many public libraries.” | |
The machine is a 3D-printed plastic rectangle, about the size of an old Nintendo cartridge. The interior of the device is carved with channels that intersect. Each channel has wide and narrow sections, like a river that expands in some parts and narrows in others. The channel walls are hydrophilic, meaning they attract water. | |
Through a series of simulations and experiments, the researchers found that when they submerged the device in water and placed a millimeter-sized plastic float in the channel, the surface tension of the water caused the wall to repel the float. If the float was in a narrow section of the channel, it moved to a wide section, where it could float as far away from the walls as possible. | |
Once in a wide section of the channel, the float would be trapped in the center, held in place by the repulsive forces between the walls and float. As the device is lifted out of the water, the repulsive forces change as the shape of the channel changes. If the float was in a wide channel to start, it may find itself in a narrow channel as the water level falls and need to move to the left or right to find a wider spot. |
“The eureka moment came when we found we could move the objects by changing the cross-section of our trapping channels,” said Maya Faaborg, an associate at SEAS and co-first author of the paper. | |
The researchers then attached microscopic fibers to the floats. As the water level changed and the floats moved to the left or right within the channels, the fibers twisted around each other. | |
“It was a shout-out-loud-in-joy moment when — on our first try — we crossed two fibers using only a piece of plastic, a water tank, and a stage that moves up and down,” said Faaborg. | |
The team then added a third float with a fiber and designed a series of channels to move the floats in a braiding pattern. They successfully braided micrometer-scale fibers of the synthetic material Kevlar. The braid was just like a traditional three-strand hair braid, except that each fiber was 10-times smaller than a single human hair. | |
The researchers then showed that the floats themselves could be microscopic. They made machines that could trap and move colloidal particles 10 micrometers in size — even though the machines were a thousand times bigger. | |
“We weren’t sure it would work, but our calculations showed that it was possible,” said Ahmed Sherif, a PhD student at SEAS and a co-author of the paper. “So we tried it, and it worked. The amazing thing about surface tension is that it produces forces that are gentle enough to grab tiny objects, even with a machine big enough to fit in your hand.” | |
Next, the team aims to design devices that can simultaneously manipulate many fibers, with the goal of making high-frequency conductors. They also plan to design other machines for micromanufacturing applications, such as building materials for optical devices from microspheres. |

News
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]
3D bioprinting advances enable creation of artificial blood vessels with layered structures
To explore possible treatments for various diseases, either animal models or human cell cultures are usually used first; however, animal models do not always mimic human diseases well, and cultures are far removed [...]
Drinking less water daily spikes your stress hormone
Researchers discovered that people who don’t drink enough water react with sharper cortisol spikes during stressful events, explaining why poor hydration is tied to long-term health risks. A recent study in the Journal of Applied [...]