Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure.
Ice comes in many forms, even when made of nothing but water molecules. Scientists have now identified more than 20 unique solid structures, or "phases," of ice, each with its own molecular arrangement. These variations are labeled with Roman numerals, such as ice I, ice II, and ice III.
In a recent breakthrough, an international team of researchers led by scientists from the Korea Research Institute of Standards and Science (KRISS) has discovered a completely new phase known as ice XXI. Using advanced X-ray facilities at the European XFEL and PETRA III, the team captured and analyzed this previously unknown structure. Their findings have been published in Nature Materials.
Ice XXI is unlike any other form of ice observed so far. It develops when liquid water is subjected to rapid compression, creating what scientists call "supercompressed water" at room temperature. This phase is metastable, meaning it can persist for a time even though another type of ice would normally be more stable under the same conditions. The discovery provides valuable new insights into how ice behaves and transforms under extreme pressure.

The Complexity of a Simple Molecule
Water or H2O, despite being composed of just two elements, exhibits remarkable complexity in its solid state. The majority of the phases are observed at high pressures and low temperatures. The team has learned more about how the different ice phases form and change with pressure.
"Rapid compression of water allows it to remain liquid up to higher pressures, where it should have already crystallized to ice VI," KRISS scientist Geun Woo Lee explains. Ice VI is an especially intriguing phase, thought to be present in the interior of icy moons such as Titan and Ganymede. Its highly distorted structure may allow complex transition pathways that lead to metastable ice phases.
Because most ice variants exist only under extreme conditions, the researchers created high-pressure conditions using diamond anvil cells. The sample – in this case, water – is placed between two diamonds, which can be used to build up very high pressure due to their hardness. Water was examined under pressures of up to two gigapascals, which is about 20,000 times more than normal air pressure. This causes ice to form even at room temperature, but the molecules are much more tightly packed than in normal ice.

In order to observe ice formation under different pressure conditions, the researchers first generated a high pressure of two gigapascals within 10 milliseconds (a millisecond is one thousandth of a second). They then released the anvil cell over a period of 1 second, then repeated the process. During these cycles, the team used the X-ray flashes of the European XFEL to capture images of the sample every microsecond – one millionth of a second. With its extremely high rate of X-ray pulses – working like a high-speed camera – they could make movies of how the ice structure formed.
Crystallizing the Discovery
Then, using the P02.2 beamline at PETRA III, the researchers determined that ice XXI has a tetragonal crystal structure built of surprisingly large repetitive units, called unit cells.
"With the unique X-ray pulses of the European XFEL, we have uncovered multiple crystallization pathways in H2O which was rapidly compressed and decompressed over 1000 times using a dynamic diamond anvil cell," explains Lee. "In this special pressure cell, samples are squeezed between the tips of two opposing diamond anvils and can be compressed along a predefined pressure pathway," states Cornelius Strohm from the DESY HIBEF team that implemented this set-up at the High Energy Density (HED) instrument of European XFEL.
"The structure in which liquid H2O crystallizes depends on the degree of supercompression of the liquid," says Lee. "Our findings suggest that a greater number of high-temperature metastable ice phases and their associated transition pathways may exist, potentially offering new insights into the composition of icy moons," Rachel Husband from the DESY HIBEF team adds.
Both DESY and European XFEL are making concerted efforts to better understand water: DESY through the joint effort Centre for Molecular Water Science, and European XFEL through its Water Call, from which this research was performed. Sakura Pascarelli, Scientific Director at European XFEL notes: "It is fantastic to see another great outcome from our Water Call, an initiative inviting scientists to propose innovative studies on water. We are looking forward to many more exciting discoveries ahead."
Reference: "Multiple freezing–melting pathways of high-density ice through ice XXI phase at room temperature" by Yun-Hee Lee, Jin Kyun Kim, Yong-Jae Kim, Minju Kim, Yong Chan Cho, Rachel J. Husband, Cornelius Strohm, Emma Ehrenreich-Petersen, Konstantin Glazyrin, Torsten Laurus, Heinz Graafsma, Robert P. C. Bauer, Felix Lehmkühler, Karen Appel, Zuzana Konôpková, Minxue Tang, Anand Prashant Dwivedi, Jolanta Sztuck-Dambietz, Lisa Randolph, Khachiwan Buakor, Oliver Humphries, Carsten Baehtz, Tobias Eklund, Lisa Katharina Mohrbach, Anshuman Mondal, Hauke Marquardt, Earl Francis O'Bannon, Katrin Amann-Winkel, Choong-Shik Yoo, Ulf Zastrau, Hanns-Peter Liermann, Hiroki Nada and Geun Woo Lee, 10 October 2025, Nature Materials.
DOI: 10.1038/s41563-025-02364-x
News
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]















