A recent study published in Scientific Reports has demonstrated the antiviral effectiveness of cetylpyridinium chloride against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cetylpyridinium chloride is an ammonium compound commonly present in mouthwash.
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of coronavirus disease 2019 (COVID-19) pandemic, is an enveloped, positive-sense, single-stranded RNA virus belonging to the human betacoronavirus family. The virus and its more aggressive variants have caused unprecedented damage to the global healthcare system, with more than 590 million confirmed infections and over 6.4 million deaths.
The primary entry site of SARS-CoV-2 into the human body is the respiratory epithelium, which expresses high levels of the entry receptor angiotensin-converting enzyme 2 (ACE2). Evidence indicates that the virus can replicate in the oral cavity and release into saliva. The literature has also established an association between salivary content of SARS-CoV-2 and COVID-19 aggravation.
Considering the significance of oral hygiene in the context of SARS-CoV-2 infection, scientists in the current study have investigated the antiviral effect as well as the mode of action of cetylpyridinium chloride against SARS-CoV-2 infection.
Cetylpyridinium chloride is an antimicrobial compound widely used in mouthwash to prevent bacterial, fungal, or viral infections in the oral cavity. The compound is known to exert antimicrobial effects by disrupting lipid membrane via physicochemical interactions. A few studies have indicated that cetylpyridinium chloride is effective against wild-type SARS-CoV-2 at low concentrations (10–50 µg/ml).
Impact of cetylpyridinium chloride on SARS-CoV-2 infectivity
The study examined the antiviral effect of cetylpyridinium chloride on a range of SARS-CoV-2 strains, including wild-type SARS-CoV-2 and alpha, beta, and gamma variants. The plaque assay was conducted to examine viral infectivity in the presence and absence of the compound.
The findings revealed that cetylpyridinium chloride at low concentrations (5 – 40 µg/ml) significantly suppresses the infectivity of all tested SARS-CoV-2 strains in a dose-dependent manner. The tested concentrations were lower than that used in commercially available mouthwash (50 µg/ml).
Impact of cetylpyridinium chloride on viral entry
The findings revealed that cetylpyridinium chloride significantly reduces the expression and copy number of viral RNA in a dose-dependent manner. These findings indicate that cetylpyridinium chloride reduces the amount of infectious virus before host cell entry.
Antiviral activity of cetylpyridinium chloride in saliva
Human saliva is highly viscous and contains many proteins that may interfere with the antiviral efficacy of cetylpyridinium chloride. Saliva samples collected from healthy donors were mixed with the virus and cetylpyridinium chloride to determine the antiviral efficacy of the compound in saliva.
The findings revealed that cetylpyridinium chloride significantly suppresses viral infectivity even in saliva in a dose-dependent manner.
Antiviral mode of action of cetylpyridinium chloride
Cetylpyridinium chloride-treated SARS-CoV-2 was subjected to sucrose density analysis and transmission electron microscopy to determine the impact of cetylpyridinium chloride on viral morphology.
The findings revealed that cetylpyridinium chloride does not impact the overall structure of the virus. The spherical particle structure of SARS-CoV-2 remained unchanged after cetylpyridinium chloride treatment.
Study significance
The study highlights the potency of cetylpyridinium chloride in inhibiting SARS-CoV-2 and its variants even at low concentrations. The antiviral activity of the compound remains unchanged in human saliva.
The study has tested the antiviral efficacy of a commercial mouthwash that contains a similar concentration of cetylpyridinium chloride as used in the study. The mouthwash exhibits similar or even better antiviral efficacy than pure cetylpyridinium chloride solution. This indicates that the other ingredients present in the mouthwash do not interfere with the anti-SARS-CoV-2 activity of cetylpyridinium chloride.
Regarding mode of action, the study suggests that cetylpyridinium chloride exerts anti-SARS-CoV-2 activity most probably by denaturing viral proteins and not by disrupting lipid membrane.
Overall, the study indicates that cetylpyridinium chloride-containing products can be used as a preventive measure to reduce the transmission rate and progression of SARS-CoV-2 infection.
An ongoing clinical study is examining the effect of cetylpyridinium chloride on SARS-CoV-2 viral load in the saliva of COVID-19 patients.
News
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]















