An article recently published in the journal Scientific Reports discussed the removal of azithromycin (Azr) antibiotic from contaminated wastewater using hematite nanoparticles (α-HNPs), which were biofabricated from a perennial medicinal herb, Echinacea purpurea.
The adsorption studies revealed the Azr removal capacity of α-HNPs from contaminated pharmaceutical wastewater. Additionally, the parameters like adsorption kinetics, isotherm, and thermodynamics were investigated to understand the adsorption process of Azr on the α-HNPs surface.
Anticancer, antibacterial, and antiviral properties of Azr@α-HNPs were assessed, and the results revealed a better synergistic effect of Azr@α-HNP nanosystems against Gram-positive bacteria compared to Gram-negative bacteria. Moreover, the half-maximal inhibitory concentration (IC50) of Azr@α-HNPs was measured to evaluate its cytotoxic effect against HepG2, MCF7, and HCT116 cell lines, and the results revealed IC50 concentrations of 81.7 (HepG2), 78.1 (MCF7), and 93.4 (HCT116) microgram per milliliter, respectively.
Thermodynamic studies confirmed that the adsorption of Azr on α-HNPs was via a spontaneous endothermic chemisorption process. Furthermore, the antiviral activity of Azr@α-HNP nanosystem against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) showed a safety therapeutic index of 25.4, suggesting its promising antiviral activity.
Nanomaterials Towards Wastewater Treatment
Antibiotics of the macrolide family (Azr) and cephalosporin family (ceftriaxone and cefixime) are used in treating cancerous and viral diseases. The unique physicochemical properties of nanomaterials offer advantages in designing nanocarriers to carry various drugs efficiently inside a biological system. Thus, loading the antibiotics into biocompatible nanomaterials could result in effective drug delivery systems.
The growing demand for macrolide and cephalosporin antibiotics resulted in their production in large quantities. Consequently, the wastewater from pharmaceutical factories and hospitals contaminated with antibiotics pollute the aquatic environment on entering water bodies. Furthermore, the excess presence of antibiotics in the human body may cause necrosis of the renal tubules and induce antibiotic resistance.
Removal of Azr is possible via physicochemical methods such as advanced oxidation using ozone and the photodegradation process. Adsorption is a cost-effective and facile process with high-performance efficiency and does not pose a risk of producing highly toxic by-products. It is one of the most effective and safe strategies to remove antibiotics from aqueous environments.
Previous reports mentioned the use of iron oxide nanoparticles in water treatment techniques. Iron oxide offers desirable characteristics such as high adsorption capacity of organic pollutants, high surface area, and magnetizing ability, favorable for water treatment techniques.
α-HNPs and Azr@-HNPs
In the present study, the researchers used α-HNP-based nano-adsorbents to assess the remediation and removal of the Azr antibiotic via adsorption technology. This study discussed the quadruple use of α-HNPs: firstly, as a bioadsorbent to remove Azr antibiotic found in the wastewater from pharmaceutical factories; secondly, using Azr@α-HNPs as an antibacterial agent against Gram-positive and Gram-negative bacteria; thirdly, comparing the efficacies of Azr@α-HNPs and α-HNPs alone as anticancer agents; and finally, in examining the efficiency of Azr@α-HNPs as nano-drug-delivery against coronavirus.
The transmission electron microscope (TEM) images revealed that the average particle sizes of α-HNPs and Azr@-HNPs were 27.8 ± 7.7 and 38.1 ± 9.3 nanometers, respectively, and their median sizes were 25.9 and 39.2 nanometers, respectively. The lowest and highest particle sizes of α-HNPs and Azr@-HNPs were 17.7 and 16.4 nanometers and 49 and 50.5 nanometers, respectively.
The experimental results of the adsorption study revealed that a pH of 10, 150 milligrams dose of α-HNPs, and 400 milligrams per liter concentration of Azr, and a temperature of 293 kelvin were the optimal conditions for the efficient adsorption of Azr on α-HNPs. Furthermore, the thermodynamic study revealed that the adsorption of Azr on α-HNPs was via a spontaneous endothermic chemisorption process and followed second-order kinetics.
Conclusion
In conclusion, the researchers of the present study aimed to use biosynthesized α-HNPs as a bioadsorbent of Azr found in contaminated pharmaceutical wastewater. The adsorption studies revealed that Langmuir was the suitable isothermal model with a correlation coefficient R2 of 0.9992 and maximum adsorption capacity was 114.05 milligram of adsorbate per one gram of contaminant (mg/g).
The results revealed that the α-HNP-based nanobioadsorbent was a promising agent for removing the Azr from contaminated wastewater. Azr@α-HNPs served as versatile nanosystems with biomedical applications such as anticancer, antiviral, and antibacterial agents. The antibacterial studies showed a high synergistic impact of Azr@α-HNPs, especially against Gram-positive bacteria.
Additionally, Azr@α-HNPs showed anticancer effects on HepG2, MCF7, and HCT116 cell lines, and its IC50 was comparatively less than α-HNPs alone against the same cell lines. The present work is the first study that revealed the use of Azr@α-HNPs as an antiviral agent against SARS-CoV-2.

News
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]