An article recently published in the journal Scientific Reports discussed the removal of azithromycin (Azr) antibiotic from contaminated wastewater using hematite nanoparticles (α-HNPs), which were biofabricated from a perennial medicinal herb, Echinacea purpurea.
The adsorption studies revealed the Azr removal capacity of α-HNPs from contaminated pharmaceutical wastewater. Additionally, the parameters like adsorption kinetics, isotherm, and thermodynamics were investigated to understand the adsorption process of Azr on the α-HNPs surface.
Anticancer, antibacterial, and antiviral properties of Azr@α-HNPs were assessed, and the results revealed a better synergistic effect of Azr@α-HNP nanosystems against Gram-positive bacteria compared to Gram-negative bacteria. Moreover, the half-maximal inhibitory concentration (IC50) of Azr@α-HNPs was measured to evaluate its cytotoxic effect against HepG2, MCF7, and HCT116 cell lines, and the results revealed IC50 concentrations of 81.7 (HepG2), 78.1 (MCF7), and 93.4 (HCT116) microgram per milliliter, respectively.
Thermodynamic studies confirmed that the adsorption of Azr on α-HNPs was via a spontaneous endothermic chemisorption process. Furthermore, the antiviral activity of Azr@α-HNP nanosystem against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) showed a safety therapeutic index of 25.4, suggesting its promising antiviral activity.
Nanomaterials Towards Wastewater Treatment
Antibiotics of the macrolide family (Azr) and cephalosporin family (ceftriaxone and cefixime) are used in treating cancerous and viral diseases. The unique physicochemical properties of nanomaterials offer advantages in designing nanocarriers to carry various drugs efficiently inside a biological system. Thus, loading the antibiotics into biocompatible nanomaterials could result in effective drug delivery systems.
The growing demand for macrolide and cephalosporin antibiotics resulted in their production in large quantities. Consequently, the wastewater from pharmaceutical factories and hospitals contaminated with antibiotics pollute the aquatic environment on entering water bodies. Furthermore, the excess presence of antibiotics in the human body may cause necrosis of the renal tubules and induce antibiotic resistance.
Removal of Azr is possible via physicochemical methods such as advanced oxidation using ozone and the photodegradation process. Adsorption is a cost-effective and facile process with high-performance efficiency and does not pose a risk of producing highly toxic by-products. It is one of the most effective and safe strategies to remove antibiotics from aqueous environments.
Previous reports mentioned the use of iron oxide nanoparticles in water treatment techniques. Iron oxide offers desirable characteristics such as high adsorption capacity of organic pollutants, high surface area, and magnetizing ability, favorable for water treatment techniques.
α-HNPs and Azr@-HNPs
In the present study, the researchers used α-HNP-based nano-adsorbents to assess the remediation and removal of the Azr antibiotic via adsorption technology. This study discussed the quadruple use of α-HNPs: firstly, as a bioadsorbent to remove Azr antibiotic found in the wastewater from pharmaceutical factories; secondly, using Azr@α-HNPs as an antibacterial agent against Gram-positive and Gram-negative bacteria; thirdly, comparing the efficacies of Azr@α-HNPs and α-HNPs alone as anticancer agents; and finally, in examining the efficiency of Azr@α-HNPs as nano-drug-delivery against coronavirus.
The transmission electron microscope (TEM) images revealed that the average particle sizes of α-HNPs and Azr@-HNPs were 27.8 ± 7.7 and 38.1 ± 9.3 nanometers, respectively, and their median sizes were 25.9 and 39.2 nanometers, respectively. The lowest and highest particle sizes of α-HNPs and Azr@-HNPs were 17.7 and 16.4 nanometers and 49 and 50.5 nanometers, respectively.
The experimental results of the adsorption study revealed that a pH of 10, 150 milligrams dose of α-HNPs, and 400 milligrams per liter concentration of Azr, and a temperature of 293 kelvin were the optimal conditions for the efficient adsorption of Azr on α-HNPs. Furthermore, the thermodynamic study revealed that the adsorption of Azr on α-HNPs was via a spontaneous endothermic chemisorption process and followed second-order kinetics.
Conclusion
In conclusion, the researchers of the present study aimed to use biosynthesized α-HNPs as a bioadsorbent of Azr found in contaminated pharmaceutical wastewater. The adsorption studies revealed that Langmuir was the suitable isothermal model with a correlation coefficient R2 of 0.9992 and maximum adsorption capacity was 114.05 milligram of adsorbate per one gram of contaminant (mg/g).
The results revealed that the α-HNP-based nanobioadsorbent was a promising agent for removing the Azr from contaminated wastewater. Azr@α-HNPs served as versatile nanosystems with biomedical applications such as anticancer, antiviral, and antibacterial agents. The antibacterial studies showed a high synergistic impact of Azr@α-HNPs, especially against Gram-positive bacteria.
Additionally, Azr@α-HNPs showed anticancer effects on HepG2, MCF7, and HCT116 cell lines, and its IC50 was comparatively less than α-HNPs alone against the same cell lines. The present work is the first study that revealed the use of Azr@α-HNPs as an antiviral agent against SARS-CoV-2.
News
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]















