Quantum dot technique can track drug and gene delivery to cells

With targeted drug and gene therapies, finding the target cells is only half the battle. Once these agents reach a cell’s surface, they still have to get inside and do their job.

University of Illinois researchers say they now know how to track and map drug and gene delivery vehicles to evaluate which are most effective at infiltrating cells and getting to their targets, insight that could guide development of new pharmaceutical agents. The researchers described their tracking system and their findings on the most effective delivery vehicles in the journal Nature Communications (“Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state”).

Gene therapies have shown promise in cell culture and animal studies but have been less effective in clinical trials, said study leader Andrew Smith, a professor of bioengineering at the U. of I. This class of pharmaceuticals, called biologics, are different from traditional drugs in that they need to be attached to specialized delivery agents, such as nanoparticles or proteins, to reach their intended cellular targets.

Their lack of efficacy stems from their difficulty in reaching targets within cells, and the obstacles hampering them are poorly understood, Smith said.
“We have these really great models that tell us how classical drugs work, but there’s no model that works for these new biologics that have to have some additional mechanism to deliver to cells. This has been a key missing part of pharmaceutical medicine,” Smith said. “If we don’t understand the mechanisms of the problem, we can’t solve it. Now we can pinpoint why that happens and figure out how to overcome the key bottlenecks, which has never been possible.”

Read more at nanowerk.com

Image Credit:  Andrew Smith

News This Week

First-ever prostate cancer treatment uses gold nanoparticles to destroy tumorous cells

A small clinical trial using gold nanoparticles that act as tumor-seeking missiles on a mission to remove prostate cancer has begun at The University of Texas Health Science Center at Houston (UTHealth). It [...]

A new path through the looking-glass

Exploring the mystery of the molecular handedness in nature, scientists have proposed a new experimental scheme to create custom-made mirror molecules for analysis. The technique can make ordinary molecules spin so fast that they [...]

First-ever prostate cancer treatment uses gold nanoparticles to destroy tumorous cells

A small clinical trial using gold nanoparticles that act as tumor-seeking missiles on a mission to remove prostate cancer has begun at The University of Texas Health Science Center at Houston (UTHealth). It is [...]

Nanomedical Device and Systems Design: Challenges, Possibilities, Visions now available to rent on Kindle

To accommodate students who wish to read the book at an affordable cost, Nanomedical Device and Systems Design: Challenges, Possibilities, Visions by Frank Boehm (CEO NanoApps Medical Inc.) is available to rent on Kindle. This book benefits [...]

New nano-immunotherapy promotes long-term acceptance of transplanted organs

Researchers at the Mount Sinai School of Medicine have developed a new nanotechnology-based immunotherapy that promotes long-term transplant acceptance in an animal model. The development, which is described in the journal Immunity, could transform [...]

Physicists name and codify new field in nanotechnology: ‘Electron Quantum Metamaterials’

“It’s a bit like driving past a vineyard and looking out the window at the vineyard rows. Every now and then, you see no rows because you’re looking directly along a row,” said Nathaniel [...]

Tying the knot: New DNA nanostructures

Knots are indispensable tools for such human activities as sailing, fishing and rock climbing, (not to mention, tying shoes). But tying a knot in a lacelike strand of DNA, measuring just billionths of a [...]

Nanoparticle Therapy for Prostate Cancer Treatments

The use of nanoparticles and other nanoscale materials has been gathering a lot of significant interest in recent years and has even adapted into its own interdisciplinary field of science known as nanomedicine. Whilst [...]

2018-05-23T09:04:49+00:00

Leave A Comment