A team of researchers recently published a paper in the journal ACS Applied Nano Materials that demonstrated the effectiveness of specific chemically-modified nanohole edges in reduced graphene oxide (rGO) in binding proteins.
Graphene-Based Biosensors
Biosensors are gaining considerable prominence owing to the rising significance of quantitative or qualitative detection of biological markers and early prognosis of diseases. Such a shift is necessitating the development of accessible, accurate, and rapid techniques.
Biosensors based on graphene, where graphene is used as a transducer or buffer, have attracted wide attention due to the exceptional properties of graphene, such as effect-free high permittivity and high carrier mobility.
Graphene combined with nanoparticles has been investigated as a biosensor in previous research; however, during the development of such biosensors, certain properties of graphene can potentially affect the detection limit of the sensor. Thus, the surface specificity of graphene must be modified for certain molecules to use in biosensors.
Modifying Graphene Nanohole Edges
In this study, researchers initially synthesized rGO nanomembrane (NMG), with nanoholes in the scale of 40-60 nm center-to-center distances and 20-25 nm in diameter, following two distinct approaches that are based on gold nano-islands (Au-NIs) and gold nanoparticles (AuNPs). Later, they performed a specific covalent chemical modification of the nanohole edges in the NMG and evaluated their effectiveness in capturing biological molecules.
rGO-AuNPs were fabricated by depositing an rGO monolayer over a self-assembled AuNP monolayer and then removing the NPs. rGO-Au-NIs were also formed in a similar manner excluding the self-assembled AuNP monolayer, which was replaced by an Au-NI layer.
Ultraviolet (UV) spectroscopy, infrared spectroscopy, and scanning electron microscope (SEM) were used to characterize the deposited layers after and before removing the NIs or the NPs.
The chemical groups in the layers were defined and investigated by Fourier transform infrared (FTIR) spectroscopy.
3-(aminopropyl) triethoxysilane (APTES) was utilized to modify the holes’ edges, while N-ethyl-N′-(3-(dimethylamino) propyl) carbodiimide/N-hydroxysuccinimide) (EDC/NHS) was applied as coupling agents to facilitate coupling between the NMG nanohole edges and a biological moiety such as an antibody.
The successful modification of the NMG edges and the scope of monitoring protein binding were investigated by attaching the angiotensin-converting enzyme 2 (ACE2) antibody to the edges, and subsequently measuring the binding ability of the edges to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein.
A number of control experiments were performed to verify the successful specific binding between the antibody/bioreceptor/ACE2 protein and the target molecule/SARS-CoV-2 spike protein.
Achieving Successful Protein Binding
NMG was successfully synthesized on the rGO layer using AuNPs and Au-NIs. The rGO films appeared as separated wrinkled flakes owing to the deformation after exfoliation and restacking processes, indicating the formation of a high-quality rGO-layered structure nanosheet.
The flakes appeared as a uniformed background after the rGO monolayer was deposited on the glass slide, and demonstrated a 97.7% transparency at a wavelength of 550 nm.
The FTIR spectrum of the GO layer displayed characteristic peaks of hydroxyl, carboxyl, aromatic, carboxy, epoxy group, whereas the FTIR spectrum of the chemically reduced GO or rGO lacked the peaks of oxygen groups that include epoxy and hydroxyl groups. Additionally, the intensities of characteristic peaks of oxygen were reduced in rGO, indicating a high degree of reduction of the GO sheet.
The aromatic groups represented the only remaining peaks at 1585 and 1623 cm-1 in the rGO.
NIs were distributed homogenously with a diameter of 25-35 nm after annealing. A high concentration of hydroxyl groups was observed at the nanohole edges in the NMG after its formation. The absorption peaks associated with nitrogen-hydrogen (N−H) bending and carbon-hydrogen (C−H) swing were observed at 1582 and 1380 cm-1 after the NMG was silanized with APTES, indicating the functionalization of NMG with APTES.
After the functionalization, the amine group was observed in the NMG with a separate peak at 1414 cm-1, which corresponded to the oxygen-hydrogen (O−H) bending vibration of the carboxyl group.
An amide bond was observed at 1533 cm-1 after the application of coupling agents at NMG edges, and more bands at 3280 and 1641 cm-1 emerged after the covalent bond interactions with the ACE2.
The amide bond was created between the carboxyl groups on the antibody and APTES-modified NMG edges owing to the presence of the amine groups at the edges. The intensity of the 1641 cm-1 peak after antibody interaction was higher compared to the peak observed in the NH2-NMG, indicating the successful antibody surface functionalization on NH2-NMG.
The FTIR spectra of NMG and rGO were measured by modifying and activating both of them with APTES and EDC/NHS. No change in peak positions was observed in rGO. However, the intensity of the amide bond increased substantially in NMG, indicating the specificity of protein binding only to hole edges and not to the surface.
Real-time binding measurements demonstrated an affinity constant of 0.93 × 109 M-1 and a dissociation constant (KD) of 1.08 nM.
Taken together, the findings of this study demonstrated a versatile and robust mechanism to perform specific modifications of NMG edges to use NMG as a real-time highly sensitive biosensor.
News
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]















