Researchers at the University of California, Irvine have discovered a new state of quantum matter. The state exists within a material that the team reports could lead to a new era of self-charging computers and ones capable of withstanding the challenges of deep space travel.
“It’s a new phase of matter, similar to how water can exist as liquid, ice or vapor,” said Luis A. Jauregui, professor of physics & astronomy at UC Irvine and corresponding author of the new paper in Physical Review Letters.
“It’s only been theoretically predicted—no one has ever measured it until now.”
This new phase is like a liquid composed of electrons and their counterparts, known as “holes,” spontaneously pairing and forming exotic states known as excitons. Unusually, the electrons and holes spin together in the same direction.
“It’s its own new thing,” Jauregui said. “If we could hold it in our hands, it would glow a bright, high-frequency light.”
The phase exists in a material developed at UC Irvine by Jinyu Liu, a postdoctoral researcher in Jauregui’s lab and the first author of the paper. Jauregui and his team measured the phase using high magnetic fields at the Los Alamos National Laboratory (LANL) in New Mexico.
The key to creating the new quantum matter was in applying a high-intensity magnetic field of up to 70 Teslas to the material (by comparison, the magnetic field from a strong fridge magnet is around 0.1 Teslas), which the team calls hafnium pentatelluride.
Jauregui explained that, as his team applied the magnetic field, the “material’s ability to carry electricity suddenly drops, showing that it has transformed into this exotic state,” he said. “This discovery is important because it may allow signals to be carried by spin rather than electrical charge, offering a new path toward energy-efficient technologies like spin-based electronics or quantum devices.”
Unlike conventional materials used in electronics, this new quantum matter isn’t affected by any form of radiation, which makes it an ideal candidate for space travel.
“It could be useful for space missions,” Jauregui said. “If you want computers in space that are going to last, this is one way to make that happen.”
Companies like SpaceX are planning human-piloted space flights to Mars, and to do that effectively, you need computers that can withstand prolonged periods of exposure to radiation.
“We don’t know yet what possibilities will open as a result,” Jauregui said.
The material was synthesized, characterized and made into measurable devices at UC Irvine by Jinyu Liu with assistance from graduate students Robert Welser and Timothy McSorley, and undergraduate researcher Triet Ho.
Theoretical modeling and interpretation were provided by Shizeng Lin, Varsha Subramanyan, and Avadh Saxena at LANL.
High-magnetic-field experiments were conducted with the support of Laurel Winter and Michael T. Pettes at LANL and David Graf at the National High Magnetic Field Laboratory in Florida.
More information: Jinyu Liu et al, Possible Spin-Triplet Excitonic Insulator in the Ultraquantum Limit of HfTe5, Physical Review Letters (2025). DOI: 10.1103/bj2n-4k2w
Journal information: Physical Review Letters
Provided by University of California, Irvine
News
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]















