A group of researchers recently published a paper in the journal ACS Nano Letters that demonstrated the feasibility of using deep learning to simulate the post-fabrication appearance of nano/microstructures fabricated by focused ion beam (FIB) milling in the two-dimensional (2D) projection of a scanning electron microscope (SEM) image.
FIB Milling Process and its Limitations
FIB milling is a “direct-write” fabrication technique performed by removing material from a target surface using a focused beam of ions. The technique is used as a standard tool in materials/bio/nano research, rapid prototyping, and semiconductor manufacturing as it can etch nanoscale features in almost every biomaterial, dielectric, semiconductor, and metal.
The result of every FIB milling process depends on a complex function of target material characteristics, scan pattern, spot size, beam current, and design geometry, specifically the pattern aspect ratio. Thus, creating an inclusive analytical model that describes all physical processes happening during milling is extremely challenging. Trial and error testing is usually performed to establish the optimal process parameters in order to achieve the desired outcome of a certain milling operation on the target surface. However, this testing method is time-consuming in nature.
Numerical, computational approaches to simulate FIB milling are often based on level set or string methods and Monte Carlo modeling of ion−atom interactions that track surface propagation over a duration. Although these approaches can reproduce three-dimensional (3D) or 2D cross-sectional profiles of FIB-milled holes or trenches in certain materials, they are mathematically complex and require detailed information on several parameters, such as physical form and atomic mass of the target, raster step size, dwell time, intensity profile, ion beam spot size, and ion flux, and angle of incidence and ion energy to a target surface.
Deep learning can offer an alternative approach as it can accurately predict the milling outcomes for arbitrary micro/nanostructural geometries in any target surface with the help of a suitably trained neural network. The method is fundamentally transforming scientific research owing to its ability to pattern recognition and empirically establish the functional algorithms of complex systems.
Evaluation of Deep Learning Approach to Predict Postfabrication Appearance of FIB-Milled Structures
In this study, researchers used deep learning to predict the post-fabrication appearance of 2D binary patterns that were FIB milled on a gold thin film. The SEM image acts as an extremely good indicator of process quality and accuracy. An FEI Helios Nanolab 600 DualBeam FIB/SEM system that includes a field-emission SEM with a 1-nanometer imaging resolution and a gallium ion gun with 20-nanometer milling resolution was employed in this study. The binary patterns were fabricated by raster scanning the ion beam in lines stepped from top to bottom and running from left to right.
The convolutional neural network (CNN) used to predict the ion beam dose from sample SEM images was constituted of four convolutional layers, with each layer formed of rectified linear unit (ReLU), pooling processes, and batch normalization. These layers were followed by a fully connected layer with one regression output. The network was initially trained on SEM images of chevrons FIB milled with dosage values in the sequence of 0.5, 1.0, 1.5, with a maximum dosage value of 17.5 mC/cm2.
The images were cropped to 299×299 pixels with random horizontal and vertical shifts of ±15 pixels in the chevron position relative to the frame center position. The training continued for 50 epochs, with a batch size of 8 and a learning rate of 0.00005, taking an overall three minutes on NVIDIA RTX2070 GPU. Subsequently, the CNN was tested on SEM images of chevrons that were milled with dosage values in the sequence of 0.25, 0.75, 1.25, up to a maximum value of 17.25 mC/cm2 and cropped to 299×299-pixels with every prediction taking 2.5 milliseconds.
The conditional generative adversarial network (cGAN) was used to simulate the FIB-milled sample SEM images. The network was constructed by a 4-layer discriminator and an 8-layer generator, with a learning rate of 0.0002 and L1 to discriminator loss ratio of 200, and trained for 5 epochs on an NVIDIA Titan Xp GPU, taking almost 45 hours. The SEM images were recorded at 710×710 pixels with 5 nanometer resolution and then rescaled to 355×355 pixels, to match the pixilation of binary designs.
Research Findings
The neural network accurately predicted the postfabrication appearance in SEM images of binary patterns fabricated by FIB milling over an extensive range of ion beam parameters, such as per-unit-area dosage, and sample design geometries that include arbitrary nano/microstructural dimensions and feature shapes. Every prediction was made within a few tens of milliseconds, and the accuracy of all predictions was more than 96%, which is sufficient to include the target- and instrument-specific artifacts.
Faster prediction with high accuracy significantly reduced the number of experimental dose-test iterations and time required in the optimization and development of new FIB processes. The method was also effective in rapidly evaluating the impact of process parameters and design modifications, and maintaining the performance in terms of consistency of outcomes from established FIB processes against aging of ion gun beam apertures and the ion source. Thus, the method can extend the useful lifetime of these components, which is specifically beneficial when they are utilized in highly repetitive tasks such as cross-sectional characterization.
To summarize, the findings of the study demonstrated that deep-learning-based prediction methodology can be deployed in almost real-time to improve reproducibility and expedite optimization of FIB processing.

News
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]