A treatment first used more than a century ago, that uses bacteria-killing viruses, is making a comeback in Australia and doctors hope it will help counter a growing crisis of antibiotic-resistant superbugs.
The Alfred hospital in Melbourne has become the first health service in Victoria to begin using the pioneering phage therapy, which involves utilising harmless viruses – known as bacteriophages – to kill germs in cases where traditional antibiotics have failed.
Professor Anton Peleg, head of infectious diseases at The Alfred, said phage therapy was being used for an increasing number of patients battling potentially deadly superbugs, on compassionate grounds.
“They are patients with severe bacterial infections that are either life-threatening, or limb threatening, or function threatening, where they don’t have any other options left,” Peleg said. “It is a salvage treatment pathway.”
However, global interest in the therapy was reawakened recently by the rise of superbugs that have developed a resistance to antibiotics.
“We desperately need novel approaches to attack superbugs, approaches that are different to existing traditional antibiotics,” Peleg said.
Increasingly, phages are now being seen by some scientists as a potential complement or even an alternative to antibiotics, the overuse of which has contributed to increasing bacterial resistance and the advent of the superbug.
The Alfred’s phage therapy program began at the end of last year in partnership with Monash University’s Centre to Impact AMR (antimicrobial resistance), and has already been used to treat people who are severely ill with antibiotic-resistant infections, including patients with cystic fibrosis, who have endured years of chronic lung infections.
Others being referred to the program include those with drug-resistant prosthetic joint or limb infections and severe burn wounds.
“We recently received another referral for a woman with a recurrent urinary tract infection with terribly resistant bacteria,” Peleg said.
According to the World Health Organisation, antimicrobial resistance is a rising threat to global health, jeopardising decades of medical progress and transforming common infections into deadly ones. A UN report suggests yearly deaths from drug-resistant diseases could rise from 700,000 to 10 million in 30 years if no action is taken.
Phage therapy, which is most commonly provided intravenously, can be required for several months. Peleg said patients at The Alfred undergoing the treatment were monitored closely to evaluate the activity of the phage in their bodies.
Peleg said the treatment depended on accurate diagnosis of the bacterial strain causing infection and the phage required to fight it. With billions of different bacteria killing viruses in our natural environment – found in river systems, soil and sewage – sourcing the appropriate phage can be difficult.
To speed up this process, Peleg and his team spent the past four years collecting the most common bacteria that have caused infections at The Alfred. Among them is Staphylococcus aureus bacteria, also known as golden staph and pseudomonas.
The hospital also has an onsite translational phage lab, where staff scour environmental sources, identify phages, then test their activity with a combination of antibiotics. The phages are then produced and packaged into vials by an expert team at Monash University.
“We’ve been storing the most common bacteria causing infection at The Alfred and are looking for phage that have killing activity against those bacteria to develop a phage biobank,” Peleg said. “This allows us to have a cocktail of multiple phages, prepared to use for future patients with bacterial infections.”
He said phage therapy was gaining traction in Australia, with teams in Melbourne and Western Australia treating their first patients recently.
But Iredell said a lack of robust data and large-scale clinical studies had hindered advancements and understanding. In Australia, the treatment is still deemed experimental and is awaiting approval by the Therapeutics Goods Administration.
“It’s our job to be sceptical, and we have to make sure this is safe, but all the data suggests so far that it is safe when it is used properly and the phage is made properly,” Iredell said.
Australians wanting the treatment must fit strict eligibility criteria, including being referred to an infectious disease specialist, who can certify they are already using the appropriate treatment and more was needed.
Iredell and Peleg are part of a group of doctors working to develop a regulatory framework to use phage therapy nationally in the hope it will pave the way for big clinical studies in Australian hospitals.
Experimental cases overseas, including two patients in the US who recovered from intractable infections after being treated with genetically engineered bacteria-killing viruses.
In 2019, a teenager in the UK also made a remarkable recovery after being among the first patients in the world to be given a genetically engineered virus to treat a drug-resistant infection.
“All of us in the phage community often joke for every bacterial problem there is a phage solution because they’re the natural predators and since before humans evolved,” Iredell said. “Antibiotic resistant infections are one of the greatest risks to modern health infrastructure, and we need to act now.”
News
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]















