A bottom-up approach to produce copper oxide (CuO) nanoparticles on hydrophilic graphene oxide (GO) nanosheets has been employed in the latest research published in Journal of Material Science: Materials in Medicine.
The CuO/GO nanocomposite was created by combining two different predecessors, copper nitrate and citric acid, with occasional mixing of GO solutions.
Importance of Copper Oxides
Copper Oxide (CuO) nanoparticles have experienced an accelerated surge in many potential applications due to their direct bandgap nature, strong electrochemical performance, and cheaper cost of manufacture. Cuprous Oxide (Cu2O) and Cupric Oxides (CuO) are the two most common forms found in nature, comprising the two most important stoichiometric compounds in the CuO systems as a whole.
They have a broad array of applications, including hydrogen gas sensors, volatile organic molecules, hydrolysis, and, most notably, solar photovoltaic cells. Because of their extensive applicability in electrolytic and smart appliances, the production of CuO nanoparticles in the laboratory is critical.
Limitations of Copper Oxide Nanocomposites
Although the usage of copper oxide nanoparticles (CuO NPs) in many applications has expanded tremendously, there are numerous restrictions to their use.
The complications that arise as a result of misinterpreting the toxicity are based on the fact that CuO nanoparticles bind, interact with living cells, and cause a change in surface properties. The toxic effects of nano-sized CuO on neurons cause cognitive dysfunction, which affects memory and learning aspects. CuO NPs has a negative impact on the structure of many organs, as observed in histological examinations.

HR-TEM of CuO/GO nanocomposites indicating the CuO deposits over GO sheets (indicated by arrows) © Biswas, K. et al., (2021)
Importance of Graphene Oxide Nanosheets
GO-based nano screens have found extensive applications in gas barrier nanocomposites due to their high dimensional nanosheet composition, which provides remarkable insulative properties to most gases. Because of their higher moisture permeability, GO nanosheet films are widely considered as promising nanomaterials for water treatment applications.
The orientated GO nanosheets inflate when water enters between them because GO films have a significant attraction for water. In addition, due to their shape and great chemical stability, graphene derivatives show potential for anti-corrosive polymer coatings.
Research Findings regarding Antibacterial Activity
The antimicrobial property of CuO/GO nanocomposite was investigated preliminary using the agar well diffusion (AWD) technique. The latest research reveals that CuO nanoparticles demonstrated extensive antimicrobial properties against Gram-positive and Gram-negative pathogens.
It was discovered that nanomaterials penetrate the cell wall of bacteria due to their sticking capability, consequently affecting the integrity of the structure of the bacterial surface and resulting in permeation into the bacteria, resulting in cidal activity of the bacterial cells.
The penetrated nanoparticles inside the bacteria generate net reactions with essential biomolecules like proteins and nucleic acids, resulting in the generation of reactive oxygen species (ROS) radicals, which cause cellular stability deterioration and death of hazardous cells.

Antibacterial activity in agar well diffusion method (A) E. coli (B) S. aureus (C) P. aeruginosa. © Biswas, K. et al., (2021)
Findings Regarding Antioxidant Activity
The antioxidant properties of nanocomposites were evaluated. CuO/GO nanocomposites were added to the culturing of A-431 cancerous cells at varying doses (0.97 nM to 1000 nM) for 24 hours at 37 °C. It was discovered that when the concentration of the CuO/GO nanocomposites increased, the proportion of viable cancer cells appeared to decrease concurrently.
Results demonstrated that ROS generation during cell functions, which occurs after being exposed to the test sample, plays an important part in the mechanism of cytotoxicity of CuO/GO nanocomposites in epidermoid cancer. For CuO/GO nanocomposite, the IC50 value was 44.86 ± 1.74 μg/ml, indicating significant antioxidant potential.
Antioxidant activity of CuO/GO nanocomposite in terms of radical scavenging activity (A) DPPH and (B) ABTS.
In short, when evaluated in-vitro, the nanocomposites showed great antibacterial and antioxidant ramifications, making it part of the nanocomposites’ therapeutic action. The produced nanocomposites had an average particle size of around 20 nm, which was large enough to evoke biological activity when evaluated. These properties open doors to further evaluate their applications for various purposes.
News
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]















