It’s “lights out” for antibiotic-resistant superbugs as next-generation light-activated nanotech proves it can eradicate some of the most notorious and potentially deadly bacteria in the world.
Golden staph (staphylococcus aureus) and Pseudomonas aeruginosa are among the most deadly superbugs in the world. Globally, about 1.27 million people die as a result of antibiotic-resistant bacteria.
Lead researcher, UniSA’s Dr. Muhammed Awad, says the new light therapy will be a game-changer for millions of people worldwide.
“Golden staph and Pseudomonas aeruginosa are both highly transmissible bacteria, commonly found on people’s skin. But if they get into the blood, they can lead to sepsis or even death,” Dr. Awad says.
“Patients in hospitals—particularly those with wounds or catheters, or those on ventilators—have a higher risk of getting these bacteria, and while antibiotics may help, their extensive use has led to waves of microbial resistance, often making them ineffective.
“Our photodynamic technology works differently, harnessing the energy of light to generate highly reactive oxygen molecules that eradicate microbial cells and kill deadly bacteria, without harming human cells.”
The researchers tested the antimicrobial photodynamic therapy on recalcitrant bacterial infections caused by antibiotic resistant strains of golden staph and Pseudomonas aeruginosa.
Senior researcher, UniSA’s Professor Clive Prestidge, says that the technology has some key advantages over conventional antibiotics and other light therapies.
“The new therapy is created in an oil that that is painted on a wound as a lotion. When laser light is applied to the lotion, it creates reactive oxygen species which act as an alternative to conventional antibiotics,” Prof. Prestidge says.
“Current photoactive compounds also suffer from poor water-solubility which mean that they have limited clinical application.
“Our approach uses food grade lipids to construct nanocarriers for the photoactive compound which improves its solubility and antibacterial efficiency far beyond that of an unformulated compound.
“These molecules target multiple bacterial cells at once, preventing bacteria from adapting and becoming resistant. So, it’s a far more effective and robust treatment.
“Importantly, the human skin cells involved in the wound healing process showed enhanced viability, while the antibiotic resistant bacteria were entirely eradicated.”
The consequences of not managing superbugs are high. Already, antibiotic resistant microbials cost millions of lives and trillions of dollars to the global economy each year.
“This technology is very promising and is gaining the attention of scientists worldwide,” Prof. Prestidge says.
“The next step is to commence clinical trials and develop this technology further to be available in clinics. With the support of funding bodies, we hope that Australians will have access to this technology as soon as possible.”

News
A potential milestone in cancer therapy
Researchers from the University of Bern, Inselspital, University Hospital Bern, and the University of Connecticut have made a significant breakthrough in the fight against cancer. They identified a previously unknown weak point of prostate [...]
Cardiovascular Crystal Ball: New Tool Predicts Future Heart Disease Risk
Faculty members at the UM School of Medicine have created a cutting-edge tool that enables the early identification and assessment of risks in vulnerable patients. Heart disease, being the leading cause of death globally, [...]
Scientists analyze a single atom with X-rays for the first time
In the most powerful X-ray facilities in the world, scientists can analyze samples so small they contain only 10,000 atoms. Smaller sizes have proved exceedingly difficult to achieve, but a multi-institutional team has scaled [...]
AI Demonstrates Superior Performance in Predicting Breast Cancer
AI algorithms outperformed traditional clinical risk models in a large-scale study, predicting five-year breast cancer risk more accurately. These models use mammograms as the single data source, offering potential advantages in individualizing patient care [...]
Stanford Medicine Reveals: Tiny DNA Circles Defying Genetic Laws Drive Cancer Formation
Tiny circles of DNA harbor cancer-associated oncogenes and immunomodulatory genes promoting cancer development. They arise during the transformation from pre-cancer to cancer, say Stanford Medicine-led team. Tiny circles of DNA that defy the accepted laws of [...]
Death to Blood Cancer Cells: New Drug Combination Could Revive the Power of Leading Treatment
Future clinical trials will be conducted to investigate whether the combination of chloroquine and venetoclax can prevent disease recurrence. Although new drugs have been developed to induce cancer cell death in individuals with acute [...]
Illuminating Science: X-Rays Visualize How One of Nature’s Strongest Bonds Breaks
Scientists have deciphered how an activated catalyst breaks down the strong carbon-hydrogen bonds in potent greenhouse gas methane, according to a study published in Science. Using advanced X-ray technology and quantum-chemical calculations, they tracked the [...]
Using magnetic nanoparticles as a rapid test for sepsis
Qun Ren, an Empa researcher, and her team are currently developing a diagnostic procedure that can rapidly detect life-threatening blood poisoning caused by staphylococcus bacteria. Staphylococcal sepsis is fatal in up to 40% of [...]
Team develops nanoparticles to deliver brain cancer treatment
University of Queensland researchers have developed a nanoparticle to take a chemotherapy drug into fast growing, aggressive brain tumors. Research team lead Dr. Taskeen Janjua from UQ's School of Pharmacy said the new silica [...]
Tumor Avatars – A New Approach to Personalized Cancer Treatment
A team from the University of Geneva (UNIGE) has devised a novel method for customizing treatments by testing them on artificial tumors. Determining the optimal treatment for colon cancer can be challenging as each [...]
STING Like a Bee: MIT’s Revolutionary Approach to Cancer Immunotherapy
A cancer vaccine combining checkpoint blockade therapy and a STING-activating drug eliminates tumors and prevents recurrence in mice. MIT researchers have engineered a therapeutic cancer vaccine that targets the STING pathway, vital for immune response [...]
AI Battles Superbugs: Helps Find New Antibiotic Drug To Combat Drug-Resistant Infections
The machine-learning algorithm identified a compound that kills Acinetobacter baumannii, a bacterium that lurks in many hospital settings. Using an artificial intelligence algorithm, researchers at MIT and McMaster University have identified a new antibiotic that can kill a [...]
Cancer and AI – Can ChatGPT Be Trusted?
A study published in the Journal of The National Cancer Institute Cancer Spectrum delved into the increasing use of chatbots and artificial intelligence (AI) in providing cancer-related information. The researchers discovered that these digital resources accurately [...]
Breathing New Life: Oxygen Therapy Improves Heart Function in Long COVID Patients
A small trial has found that hyperbaric oxygen therapy (HBOT) may help restore proper heart function in patients with post-COVID syndrome, with participants in the HBOT group experiencing a significant increase in global longitudinal [...]
Wireless Brain-Spine Interface: A Leap Towards Reversing Paralysis
Summary: In a pioneering study, researchers designed a wireless brain-spine interface enabling a paralyzed man to walk naturally again. The ‘digital bridge’ comprises two electronic implants — one on the brain and another on the [...]
New study reveals a gel that promises to wipe out brain cancer for good
An anti-cancer gel promises to wipe out glioblastoma permanently, a feat that's never been accomplished by any drug or surgery. So what makes this gel so special? Scientists at Johns Hopkins University (JHU) have [...]