Antimicrobial peptides (AMPs) have a broad spectrum of antimicrobial activity and lyse microbial cells by interaction with biomembranes, offering great potential in designing new therapeutics. The antimicrobial resistance (AMR) caused due to overuse of antibiotics can be circumvented by using AMPs as alternatives to antibiotics.
The rod-shaped chitosan nanocrystals are polysaccharide-based nanomaterials obtained by deacetylation of marine biomass waste. The primary amino group on the surface of chitosan nanocrystals helps in surface functionalization, tuning their surface properties. An article published in the journal Carbohydrate Polymers presented a new methodology to functionalize the chitosan nanocrystals with peptides and amino acids via solid phase peptide synthesis.
The resulting rod-shaped functionalized chitosan nanocrystals were characterized using dynamic light scattering (DLS), nuclear magnetic resonance (NMR), transmission electron microscopy (TEM) imaging, and zeta potential measurements. This synthetic strategy can be designed to generate target-specific nanomaterials based on chitosan nanocrystals through the attached peptides on the surface of the nanomaterials.
Chitosan Nanoparticles and Solid-Phase Peptide Synthesis
Chitosan, also known as deacetylated chitin, is a natural polycationic linear polysaccharide derived from the partial deacetylation of chitin. Chitosan is composed of β-(1-4)-linked d-glucosamine and N-acetyl-d-glucosamine that are randomly distributed within the polymer.
The cationic nature of chitosan is rather unique, as most polysaccharides are usually either neutral or negatively charged in an acidic environment. Besides, chitosan is reported to have other biological properties, such as antitumor, antimicrobial, and antioxidant activities.
Chitosan nanoparticles combine the natural properties of polymers with tunable sizes and the possibility of surface modification according to requirements. Thus, chitosan nanoparticles are a promising and versatile strategy to overcome most active ingredients’ bioavailability and stability issues.
Chitosan nanoparticles are highly important in nanomedicine, biomedical engineering, and the discovery and development of new drugs. They are used to create new release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity of drugs.
Chitosan nanocrystals are rod-shaped nanomaterials of 100-200 nanometers in length and 5-20 nanometers in width, formed by the deacetylation of chitin nanocrystals. These nanocrystals are nontoxic materials with a large surface area, high mechanical strength, and tunable colloidal and self-assembly behavior in aqueous media, making them suitable for several downstream applications in nanomedicine drug delivery, food packaging, and the papermaking industry.
Because of their cationic and nanometre dimensions, several reports have mentioned chitosan nanoparticles in drug delivery systems. The primary amino groups present on the surface of the chitosan nanomaterial facilitated surface functionalization to impart tunable properties to the chitosan derivatives.
Solid-phase peptide synthesis is a popular method for synthesizing peptides of various lengths. This involves the successive addition of protected amino acid derivatives to a growing peptide chain immobilized on a solid phase, including deprotection and washing steps to remove unreacted groups and side products, resulting in the formation of a predetermined peptide moiety.
Chitosan Nanocrystals Decorated with Amino Acids and Peptides
The present study developed a new strategy to functionalize chitosan nanocrystals with peptides and amino acids of different lengths using a fundamental solid-phase peptide synthesis method. In addition to the tunable properties of chitosan nanocrystals owing to the presence of amino functional groups on the nanomaterial surface, the chitosan nanocrystals also have an intrinsic morphology and nanometre size, which facilitates their use as a scaffold.
Here, solid-phase peptide synthesis involves assembling the peptide chain through a series of coupling and decoupling reactions of amino acids on an insoluble resin, followed by cleavage of the desired peptide chain from the resin.
Furthermore, the insolubility of chitosan nanocrystals under the reaction conditions of peptide coupling enabled the treatment of nanomaterials and resins similarly. Moreover, the reactivity of the amino groups on the nanomaterials was utilized to anchor amino acid residues.
The formation of the functionalized rod-shaped nanomaterials was characterized using NMR, DLS, microscopy, and zeta potential measurements. While NMR results confirmed the esterification of chitosan during the reaction with amino acids, TEM images showed well-dispersed rod-like particles, indicating that the surface chemical modification did not affect the structure and morphology of the nanocrystals. Thus, the present synthetic strategy could have promising applications in designing chitosan nanocrystals with target specificity.
Conclusion
Overall, a new methodology was developed to modify the surface of chitosan nanocrystals by utilizing peptides and amino acids of different lengths via solid-phase peptide synthesis. This strategy used the primary amine functional groups present on the surface of chitosan nanocrystals and carboxyl groups of amino acid residues in organic solvents to produce peptide-modified chitosan nanocrystals.
The relative insolubility of chitosan nanocrystals in organic solvents makes the synthesis of chitosan nanocrystals convenient through a series of stepwise deprotection and coupling steps. The rod-shaped morphology, nanometer size, and tunable properties of chitosan nanocrystals impart them with target specificity by attaching bioactive peptides to the surface of nanomaterials.

News
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]