The laborious, uneconomical process of sequencing DNA molecules – a technology used to identify, diagnose, and perhaps find treatments for diseases – could become much faster and cheaper thanks to a new nanofabrication technique that exploits nano-sized air-gaps, or nanocracks, in electrically conductive materials.
A doctoral student in Micro and Nanosystems at KTH, Valentin Dubois, presented the new method in his dissertation, explaining that the results offer a potential alternative to existing optical DNA sequencing processes, which depend on bulky, costly equipment. The research was done in partnership with his supervisors.
Our method can, in principle, enable the development of DNA sequencers consisting of a simple USB-connected docking station, in a size equivalent to a small smartphone, costing less than €100. And anyone could use it without any special training. Hopefully, it will be possible to determine a person’s genetic makeup in less than an hour, instead of days, as is the case nowadays. Valentin Dubois
Nanogap electrodes, essentially a pair of electrodes having a nanometer-sized gap between them, are gaining attention as scaffolds to explore, sense, or harness the smallest stable structures located in nature: molecules. In his dissertation Crack-junctions: Linking the gap between nano electronics and giga manufacturing, Valentin Dubois explains how to apply the exceptional properties of nanocracks in electrically conductive materials as a new means of forming electrode pairs possessing nanometer-wide air gaps

Image Credit: Envato/ Alias studio
News This Week
New material discovery could revolutionize roll-out of global vaccinations
New raw vaccine materials that could make vaccines more accessible, sustainable, and ethical have been discovered. The results of the research have been published in Polymers. Adjuvants are vaccine ingredients that boost a person's immune response [...]
Scientists Develop Incredibly Lightweight Material 4 Times Stronger Than Steel
Researchers developed a light yet strong material by combining two unexpected ingredients—DNA and glass. Working at the nanoscale provides scientists with a deep understanding and precision in crafting and analyzing materials. In broader-scale production, and even [...]
New Implant Doctors Hope Will Cut Cancer Deaths in Half
Researchers at Houston's Rice University are developing an implant that could diminish deaths caused by cancer by half. The device will contain synthetically nurtured human cells and be embedded with sensors to keep track of cancer [...]
Machine learning helps predict drugs’ favorite subcellular haunts
Most drugs are small molecules that bind firmly to a specific target—some molecule in human cells that is involved in a disease—in order to work. For example, a cancer drug's target might be a [...]
Nanotechnology Breakthrough Could Help Treat Blindness
Scientists utilize nanotechnology to address a prevalent cause of vision loss. Scientists have discovered a way to use nanotechnology to create a 3D ‘scaffold’ to grow cells from the retina. This breakthrough could lead [...]
Decoding Women’s Health: Artificial Intelligence Revolutionizes PCOS Diagnosis
NIH study reviews 25 years of data and finds AI/ML can detect common hormone disorder. Artificial intelligence (AI) and machine learning (ML) can effectively detect and diagnose Polycystic Ovary Syndrome (PCOS), which is the most common [...]
Surprising Discovery Could Explain How Coronaviruses Jump Species
New insights are enhancing scientists’ efforts to stay ahead of COVID-19 and the next pandemic. Unexpected new insights into the ways COVID-19 infects cells could shed light on the virus’s adept ability to jump from one species to another [...]
A blood test for long Covid is possible, a study suggests
Scientists can now show key differences in the blood of those who recover from Covid — and those who don't. More than three years into the pandemic, the millions of people who have suffered [...]
Leave A Comment