| Scientists are building a new super-resolution microscope that uses laser light to study the inner workings and behaviours of superbugs to gain new insights into how they cause disease. | |
| The microscope will allow scientists to peer into bacteria like Streptococcus Pneumoniae at a molecular-scale resolution – showing up objects smaller than 10,000th the thickness of a sheet of paper. | |
| A leading cause of bacterial pneumonia, meningitis, and sepsis, Streptococcus Pneumoniae bacteria are estimated to have caused around 335,000 deaths in children aged five years and under in 2015 worldwide. |
| Current technologies do not allow a resolution that enables thorough studies of bacterial properties that affect disease development. | |
| But now, this super-resolution microscope uses laser light to illuminate proteins at incredibly high resolutions, allowing scientists to gain new insights into what makes these potentially deadly bacteria so pathogenic. | |
| Although electron microscopes can show minute detail at the atomic level, they cannot analyse live specimens: electrons can easily be deflected by molecules in the air, meaning any bacteria under inspection must be held in a vacuum. Therefore super-resolution microscopes are far more superior for biological analysis. | |
| Called the “NANO-scale Visualisation to understand Bacterial virulence and invasiveness – based on fluorescence NANOscopy and VIBrational microscopy” (or ‘NanoVIB’ for short), the project will shed new light on how superbugs can cause disease, thereby providing the basis for the development of new antimicrobials to treat bacterial infections. | |
| In a bid to understand how bacteria cause disease, the European Commission has granted this health consortium €5,635,529 via the Photonics Public Private Partnership to build this super-resolution microscope. | |
Ten-fold Resolution |
|
| While super-resolution microscopes already exist, the NanoVIB team proposes to make a new device with unrivalled resolution capable of revealing the intricate, detailed molecular mechanisms underlying inter-and intracellular processes and disease. | |
| Project coordinator, Professor Jerker Widengren, said: “We expect our new microscope prototype to be a next-generation super-resolution system, making it possible to image cellular proteins marked with fluorescence emitters (fluorophores) with a ten-fold higher resolution than with any other fluorescence microscopy technique. | |
| With the help of advanced laser, detector and microscopy technologies that will be developed in the project, super-resolution localisation patterns of specific proteins will be overlaid with light-scattering images, correlating these patterns with local structures and chemical conditions in the bacteria. | |
| “Using laser light, this new microscope will show how bacterial proteins localise on the surface of bacteria, allowing scientists to study the interaction of the pathogen with immune and host cells. | |
| It works based on the so-called MINFLUX concept, where infrared laser light excites fluorophore-labelled molecules in a triangulated manner – leading to an increased resolution. The user can then fine-tune the microscopic imaging to previously unimaginable resolutions. | |
| “MINFLUX microscopy will make it possible to resolve how certain pneumococcal surface proteins are distributed on the bacteria under different cell division stages, and whether these proteins are localised in such a way that specific, extra sensitive surface regions of the bacteria, a critical step of the cell division, are protected from immune activation,” said Widengren. | |
European Research Ecosystem |
|
| The NanoVIB team took their inspiration from a previous EU-funded project, Fluodiamon, which analysed how specific proteins are spatially distributed in breast and prostate cancer cells compared to those in corresponding non-cancer cells, demonstrating a new basis for cancer diagnosis. | |
| “The goal of the NanoVIB project is to retrieve information, which is not within reach by any other microscopic or photonics-based technique. We will demonstrate how cellular nanoscale protein localisation patterns can be resolved, which will help us reveal bacterial disease mechanisms and are likely to be of considerable relevance for many other diseases. | |
| “These studies could shed new light on how specific surface proteins of these bacteria are spatially distributed on the cells and provide important evidence that the virulence (capacity to generate disease) and invasiveness of these bacteria are strongly coupled to such spatial distribution patterns.” |
News
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]















