A device that applies sound waves to divide and sort minute particles located in the blood within minutes has been developed by Engineers at Duke University. The technology is established on a concept referred to as “virtual pillars” and could be advantageous to scientific research and for medical applications.
Minute biological nanoparticles known as “small extracellular vesicles” (sEVs) are discharged from all types of cells in the body and are supposed to play a huge role in cell-to-cell communication and disease transmission.
The novel technology, labeled Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER for short), is not only capable of pulling these nanoparticles from biofluids within 10 minutes but also is capable of sorting them into size groups that are said to have unique biological roles.
The results were published online in the November 23rd issue of the journal Science Advances.
These nanoparticles have significant potential in medical diagnosis and treatment, but the current technologies for separating and sorting them take several hours or days, are inconsistent, produce low yield or purity, suffer from contamination, and sometimes damage the nanoparticles.
Tony Jun Huang, William Bevan Distinguished Professor, Mechanical Engineering and Materials Science, Duke University
“We want to make extracting and sorting high-quality sEVs as simple as pushing a button and getting the desired samples faster than it takes to take a shower,” Huang added.
New research shows that sEVs contain many subgroups with unique sizes (e.g., smaller than 50 nm, between 60 and 80 nm, and between 90 and 150 nm). Each size is said to have diverse biological properties.
The latest discovery of sEV subpopulations has thrilled scientists because of their potential to transform the domain of non-invasive diagnostics, for example, the early detection of Alzheimer’s disease and cancer. However, the particles are yet to find their way into the clinical environment.
Huang said this is mainly because of the problems related to separating and isolating these nano-sized sEV subpopulations. To overcome this challenge, Huang, his doctoral student Jinxin Zhang, and partners at Harvard, UCLA, and Magee-Womens Research Institute created the ANSWER platform.
The device is fitted with a single pair of transducers to produce a standing sound wave that encloses a narrow, enclosed channel full of fluid. This sound wave “leaks” into the liquid center via the channel walls and interacts with the original standing sound wave. Owing to the careful design of the wall thickness, sound frequency, and channel size, this interaction generates a resonance that produces “virtual pillars” along the channel’s center.
Each of these virtual pillars is fundamentally a half-egg-shaped zone of high pressure. As particles try to cross over the pillars, they are forced toward the channel’s edges. Moreover, the bigger the particles, the bigger the force. By altering the series of virtual pillars to produce nuanced forces on the moving nanoparticles, the scientists can accurately categorize them by size into a range of groups established by the requirements of the current experiments.
The ANSWER EV fractionation technology is the most advanced capability for precise EV fractionation, and it will significantly impact the horizon of EV diagnostics, prognostics, and liquid biopsy
David Wong, Director, Center for Oral/Head and Neck Oncology Research, University of California, Los Angeles
In the new article, the scientists show that their ANSWER platform can effectively categorize sEVs into three subgroups with an accuracy of 96% for nanoparticles on the larger end of the range and an accuracy of 80% for the smallest.
They also demonstrate flexibility in their system, regulating the number of groupings and ranges of sizes with basic updates to the parameters of the sound wave. Each of the experiments just took 10 minutes to perform, whereas other techniques, such as ultra-centrifugation, consume numerous hours or days.
Due to its contact-free nature, ANSWER offers a biocompatible approach for the separation of biological nanoparticles. Unlike mechanical filtration methods, which have fixed separation cutoff diameters, ANSWER offers a tunable approach to nanoscale separation, and the cutoff diameter can be precisely modified by varying the input acoustic power.
Jinxin Zhang, Doctoral Student, Department of Mechanical Engineering and Materials Science, Duke University

News
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]