A device that applies sound waves to divide and sort minute particles located in the blood within minutes has been developed by Engineers at Duke University. The technology is established on a concept referred to as “virtual pillars” and could be advantageous to scientific research and for medical applications.
Minute biological nanoparticles known as “small extracellular vesicles” (sEVs) are discharged from all types of cells in the body and are supposed to play a huge role in cell-to-cell communication and disease transmission.
The novel technology, labeled Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER for short), is not only capable of pulling these nanoparticles from biofluids within 10 minutes but also is capable of sorting them into size groups that are said to have unique biological roles.
The results were published online in the November 23rd issue of the journal Science Advances.
These nanoparticles have significant potential in medical diagnosis and treatment, but the current technologies for separating and sorting them take several hours or days, are inconsistent, produce low yield or purity, suffer from contamination, and sometimes damage the nanoparticles.
Tony Jun Huang, William Bevan Distinguished Professor, Mechanical Engineering and Materials Science, Duke University
“We want to make extracting and sorting high-quality sEVs as simple as pushing a button and getting the desired samples faster than it takes to take a shower,” Huang added.
New research shows that sEVs contain many subgroups with unique sizes (e.g., smaller than 50 nm, between 60 and 80 nm, and between 90 and 150 nm). Each size is said to have diverse biological properties.
The latest discovery of sEV subpopulations has thrilled scientists because of their potential to transform the domain of non-invasive diagnostics, for example, the early detection of Alzheimer’s disease and cancer. However, the particles are yet to find their way into the clinical environment.
Huang said this is mainly because of the problems related to separating and isolating these nano-sized sEV subpopulations. To overcome this challenge, Huang, his doctoral student Jinxin Zhang, and partners at Harvard, UCLA, and Magee-Womens Research Institute created the ANSWER platform.
The device is fitted with a single pair of transducers to produce a standing sound wave that encloses a narrow, enclosed channel full of fluid. This sound wave “leaks” into the liquid center via the channel walls and interacts with the original standing sound wave. Owing to the careful design of the wall thickness, sound frequency, and channel size, this interaction generates a resonance that produces “virtual pillars” along the channel’s center.
Each of these virtual pillars is fundamentally a half-egg-shaped zone of high pressure. As particles try to cross over the pillars, they are forced toward the channel’s edges. Moreover, the bigger the particles, the bigger the force. By altering the series of virtual pillars to produce nuanced forces on the moving nanoparticles, the scientists can accurately categorize them by size into a range of groups established by the requirements of the current experiments.
The ANSWER EV fractionation technology is the most advanced capability for precise EV fractionation, and it will significantly impact the horizon of EV diagnostics, prognostics, and liquid biopsy
David Wong, Director, Center for Oral/Head and Neck Oncology Research, University of California, Los Angeles
In the new article, the scientists show that their ANSWER platform can effectively categorize sEVs into three subgroups with an accuracy of 96% for nanoparticles on the larger end of the range and an accuracy of 80% for the smallest.
They also demonstrate flexibility in their system, regulating the number of groupings and ranges of sizes with basic updates to the parameters of the sound wave. Each of the experiments just took 10 minutes to perform, whereas other techniques, such as ultra-centrifugation, consume numerous hours or days.
Due to its contact-free nature, ANSWER offers a biocompatible approach for the separation of biological nanoparticles. Unlike mechanical filtration methods, which have fixed separation cutoff diameters, ANSWER offers a tunable approach to nanoscale separation, and the cutoff diameter can be precisely modified by varying the input acoustic power.
Jinxin Zhang, Doctoral Student, Department of Mechanical Engineering and Materials Science, Duke University
News
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]















