Although retinoic acid (RA) can induce cell death, its weak anticancer efficacy limits its clinical applications. To this end, stimulus-responsive self-assembling prodrug-based nanomedicines are promising candidates that enable controlled drug delivery.
In an article published in the journal Biomaterials, unique chemistry was explored to maximize the therapeutic potential of RA, wherein aryl boronic acid was subjected to hydrogen peroxide (H2O2) to release quinone methide (QM). Furthermore, the generation of hydroxy benzyl alcohol (HBA) from alkylates glutathione (GSH) suppressed the expression of vascular endothelial growth factor (VEGF).
The boronated RA prodrug (RABA) was formulated into robust drug delivery systems that are self-deliverable nanoassemblies that released QM and RA via H2O2-triggered self-immolation manner to exhibit anticancer activities. Moreover, RABA nanoassemblies promoted apoptosis of cancer cell-mediated by reactive oxygen species (ROS).
The self-assembling prodrug-based drug delivery is beneficial for the excellent anticancer efficacy of RABA nanoassemblies. This strategy has provided new insight into the designing and development of self-immolating prodrug nanoassemblies for target-specific cancer therapy.
Prodrug Nanoassemblies as Drug Delivery Systems
Drug self-delivery based on nanoassemblies is a new paradigm for controlled drug delivery and efficient anticancer therapy. Moreover, this type of drug delivery allows intracellular delivery of drugs without the need for carriers, thus exhibiting nanoscale characteristics.
Molecular nanoassemblies involve an instantaneous assembling of small molecules to form well-organized nanostructures, while various noncovalent interactions are leveraged. Prodrugs are converted into active ingredients upon administration and enhance their therapeutic activity. Thus, prodrug delivery based on nanoassemblies involves modulation of the prodrug’s molecular structure to integrate them with molecular nanoassemblies enabling the formation of robust drug delivery systems.
These nanoassemblies are amphiphilic, possessing both hydrophilic and hydrophobic moieties, facilitating instantaneous assembly under aqueous conditions. Furthermore, the prodrug nanoassemblies formed enable controlled drug delivery.
RA plays a vital role in cell growth and differentiation and induces cancer cell apoptosis via cytotoxic activities. Moreover, RA is anticipated to enhance the efficacy of immune checkpoint inhibitors and antiangiogenic therapies. However, RA is inefficient in inducing cancer cell apoptosis compared to traditional anticancer drugs.
ROS such as H2O2 serves as a messenger in signaling pathways enabling tumor development. However, its excess presence induces damage to cancer cells leading to cell death. To this end, GSH is an antioxidant found in cells whose excess presence promotes tumor progression inducing therapeutic resistance to cancer cells.
Prodrug Nanoassemblies as Efficient Drug Delivery Systems
Boronic/boronated groups release the parent drug via an H2O2-triggered manner. Hence are used as a masking moiety for drugs in drug delivery. Aryl boronic/boronated groups connected to drug moieties via self-immolating spacer are oxidized in the presence of H2O2 to form QM through 1,6-elimination.
In the present work, the RABA hybrid prodrug was prepared based on self-immolating chemistry. Under H2O2 endogenous stimulus, the hybrid prodrug released pharmacologically active molecules (RA and QM). Furthermore, due to its amphiphilicity, RABA underwent self-assembly to form nanoassemblies in aqueous media, leading to a robust drug delivery system.
Since γ poly-glutamic acid (γ-PGA) was previously reported to bind to gamma-glutamyl transferase (GGT) with a high affinity, the RABA was coated with γ-PGA leading to tRABA nanoassemblies as drug delivery systems, employed as cancer-targeted nanomedicines. The synthesized tRABA nanoassemblies had a negative surface charge of -31 millivolts at pH 7.
Scanning electron microscope (SEM) results revealed that tRABA nanoassemblies were in the form of round spherical colloids with a mean hydrodynamic diameter of approximately 170 nanometers and polydispersity index (PDI) of 0.15. The tRABA nanoassemblies as efficient drug delivery systems showed excellent colloidal stability in the physiological solution, and superficial γ-PGA coating prevented protein adsorption on the tRABA nanoassemblies and aggregation.
The drug delivery and therapeutic actions of these tRABA nanoassemblies were triggered by endogenously produced H2O2. The therapeutic activity and translational potential of tRABA nanoassemblies were extensively investigated using mouse xenograft models and cell culture.
The results confirmed that the present work is a facile and highly efficient method to prepare hybrid prodrugs for their formulation into self-deliverable and self-immolating nanoassemblies as efficient drug delivery systems to exhibit synergistic anticancer actions and simultaneously overcome the limitations of carriers-mediated drug delivery.
Conclusion
To summarize, a self-deliverable and self-immolating drug delivery system, RABA was synthesized via a conjugation reaction between aryl boronic acid and RA. Self-assembly of RABA followed by coating with γ PGA resulted in γ PGA-coated RABA (tRABA) nanoassemblies, which released RA and QM in an H2O2-triggered manner inducing cancer cell apoptosis.
Furthermore, tRABA nanoassemblies targeted specific cancer cells that express gamma-glutamyl transferase (GGT). The in vivo studies on animal models demonstrated that the accumulation of tRABA nanoassemblies was specific to GGT expressing cancer cells that promoted the eradication of tumors.
The simple conjugation between boronic acid and RA allowed the formation of self-deliverable and self-immolating nanoassemblies. It led to triple cooperative anticancer activity and improved therapeutic potency of RA. With the help of the present work, tRABA nanoassemblies were demonstrated as potential drug delivery systems.
 
News
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
 
									















 
	 
	 
	 
	