In the wake of the COVID-19 pandemic, scientists have been racing to develop effective treatments and preventatives against the virus. A recent scientific breakthrough has emerged from the work of researchers aiming to combat SARS-CoV-2, the virus responsible for COVID-19.
Led by Jin Kim Montclare and her team, the study, published in the Biochemical Engineering Journal, focuses on the design and development of a novel protein capable of binding to the spike proteins found on the surface of the coronavirus. The goal behind this innovative approach is twofold: first, to identify and recognize the virus for diagnostic purposes, and second, to hinder its ability to infect human cells.
The engineered protein, resembling a structure with five arms, exhibits a unique feature—a hydrophobic pore within its coiled-coil configuration. This feature enables the protein not only to bind to the virus but also to capture small molecules, such as the antiviral drug Ritonavir.
Ritonavir, already utilized in the treatment of SARS-CoV-2 infections, serves as a logical choice for integration into this protein-based therapeutic. By incorporating Ritonavir into the protein, the researchers aim to enhance the treatment’s efficacy while simultaneously targeting the virus directly.
The study marks a significant advancement in the fight against COVID-19, showcasing a multifaceted approach to combating the virus. Through a combination of protein engineering and computational design, the team has devised a promising strategy that may revolutionize current treatment modalities.
Although the research is still in its early stages, with no human or animal trials conducted as yet, the findings offer a proof of principle for the therapeutic potential of the designed protein. The team has demonstrated its ability to enhance the protein’s binding affinity to the virus spike protein, laying the groundwork for future investigations.
The potential applications of this protein-based therapeutic extend beyond COVID-19. Its versatility opens doors to combating a range of viral infections, offering a dual mode of action—preventing viral entry into human cells and neutralizing virus particles.
Furthermore, the success of this study underscores the importance of computational approaches in protein design. By leveraging computational tools such as Rosetta, the researchers have accelerated the process of protein engineering, enabling rapid iterations and optimization.
The development of this novel protein represents a significant step forward in the ongoing battle against COVID-19. As research progresses, the integration of computational design and protein engineering holds promise for the development of innovative therapeutics with broad-spectrum antiviral capabilities. While challenges remain, this study offers hope for a future where effective treatments against emerging viral threats are within reach.
More information: Dustin Britton et al, Dual coiled-coil protein domain mimic and drug delivery vehicle for SARS-CoV-2, Biochemical Engineering Journal (2024). DOI: 10.1016/j.bej.2024.109261
News
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]















