Glioblastoma (GBM) is a malignant brain cancer in adults with a median survival period of 15 months from the point of diagnosis. Residual tumor cells that remain beyond the margins of every GBM resection are resistant to postsurgical therapy and are the driving force of mortality. These residual tumor cells reach extensive brain tissues, making it difficult for the therapeutics to target the tumor without causing neural damage.
Thus, therapeutic development for GBM should either directly target the brain-invading tumor cells or indirectly support invading them and prevent reoccurrence. An article published recently in Advanced Drug Delivery Reviews summarized a few drug delivery techniques and nanotherapeutic technologies. These techniques or technologies target the GBM cells that invade the brain or non-cancerous, invasion-supporting cells that reside within the GBM microenvironment.
Challenges in Treating GBM
GBM is highly heterogeneous, and the stem cell-like glioma cells have infiltrative nature that migrates away from a hypothetical point of origin and reaches extensive brain tissues that are difficult to be treated. Gliomas with areas of necrosis envelope a mass of viable tumor cells that can invade neighboring healthy brain tissue. This invasive nature of GBM retains a few malignant cells even after standard tumor resection leading to recurrence.
The major challenge in GBM treatment is the drug delivery to the tumor site without damaging the surrounding neural cells, as the GBM tumors migrate to deeper brain tissues. Moreover, the presence of the blood-brain barrier (BBB) at the interface of the central nervous system (CNS) and the neurovascular unit (NVU) interrupt the passage of drugs through this BBB membrane resulting in the drug accumulation at a low therapeutic concentration in the brain.
Interstitial and other drug delivery approaches can overcome the BBB transport barrier, effectively delivering therapies more extensively into brain tissues. Furthermore, there have been continuous efforts to investigate these approaches for safety and clinical feasibility. However, target-specific treatments for GBM were clinically unsuccessful.
Nanomedicine Towards GBM Therapy
Nanoparticles (NPs) as drug delivery systems circumvent the drawbacks of conventional chemotherapy. The NPs improve biodistribution and half-life and enhances intracellular accumulation. Moreover, the tunable physicochemical properties and surface profiles are advantageous for tumor-specific targeting.
The controllable drug release kinetics of therapeutic NPs prevents the need for multiple drug administrations. These NPs are also suitable for combination therapy. The NP systems like polymeric NPs, lipid-based NPs, micelles, dendrimers, and inorganic NPs have unique physicochemical and surface properties and were tested preclinically for GBM drug delivery.
The physicochemical properties of NPs majorly determine their feasibility in crossing the BBB and targeting specifically at and into the tumor cells. Previous studies reported on NP diffusion within the brains of rats and humans revealed the favorable characteristics for NP’s BBB penetration. The studies confirmed that a pore size distribution between 100 to 200 nanometers, hydrodynamic size of about 100 nanometers, and slightly anionic or neutral surface charge enable NPs to cross BBB.
Clinical NPs in GBM Therapy
Several nanoplatforms are currently under clinical evaluation for either therapy or imaging of brain tumors. These nanotherapeutics are composed of lipids or inorganic materials. Lipid-based NPs are FDA-approved nanomedicines that constitute phospholipids with vesicular structures (unilamellar or multilamellar). These structures facilitate the co-encapsulation of hydrophobic, hydrophilic, and lipophilic drugs within the same liposomal system enabling their application in combination therapy.
Inorganic NPs with intrinsic material properties offer unique physical, magnetic, electrical, and optical properties. Leveraging these unique properties help attain the required features in NPs that otherwise is unachievable via organic or polymeric biomaterials. Inorganic NPs in GBM drug delivery and imaging applications include silica, gold, and iron oxide NPs.
Drug Delivery Strategies Targeting GBM
The BBB neuro-vascular unit is unique, complex, and composed of endothelial cells (ECs). The inter-EC junctions contain proteins joined by a basal lamina and distributed between pericytes and astrocytes.
NPs harness endogenous transport processes like carrier-mediated transcytosis (CMT), receptor-mediated transcytosis (RMT), and adsorptive-mediated transcytosis (AMT). Of the three, the passage of NPs through BBB is better via the RMT-mediated pathway. Moreover, the RMT-mediated transcytosis across the BBB initiates on the brain capillary’s luminal side and microvascular ECs.
The interactions between the NP-based ligand and the receptor trigger continuous trafficking associated with receptor-mediated endocytosis, regulated via vesicles that are either clathrin-decorated or devoid of it and are transported intracellularly to reach multivesicular bodies and finally fuse on the BBB’s abluminal side, which allows the release of trafficking components into brain parenchyma.
Conclusion
To summarize, residual GBM cells, after surgical therapy, invade deeper brain tissues and pose a challenge in GBM patient management. The rapid recurrence of tumors, closer proximity between cancer cells and functional brain cells, and impermeable nature of BBB are primary hindrances to effectively treating GBM-infected cells.
The drug delivery approach based on NPs can eliminate residual glioma cells after surgery. These NPs either can be delivered directly into the brain or can be engineered to cross the BBB via RMT. Moreover, hydrogel-based depot systems and convection-enhanced delivery (CED) can cross the BBB and release drugs locally along the resection cavity.

News
Superbugs Are Losing to Science, Light, and a Little Spice
Texas A&M researchers have found that curcumin, when activated by light, can weaken antibiotic-resistant bacteria, restoring the effectiveness of conventional antibiotics. Curcumin: A Surprising Ally Against Superbugs In 2017, a woman admitted to a [...]
New Research Shatters the Perfect Pitch Myth
For decades, people believed absolute pitch was an exclusive ability granted only to those with the right genetics or early music training. But new research from the University of Surrey proves otherwise. It’s been [...]
Why Some Drinkers Suffer Devastating Liver Damage While Others Don’t
A study from Keck Medicine of USC found that heavy drinkers with diabetes, high blood pressure, or a large waistline are up to 2.4 times more likely to develop advanced liver disease. These conditions may amplify [...]
“Good” Cholesterol Could Be Bad for Your Eyes – New Study Raises Concerns
‘Good’ cholesterol may be linked to an increased risk of glaucoma in individuals over 55, while, paradoxically, ‘bad’ cholesterol may be associated with a lower risk. These findings challenge conventional beliefs about factors that [...]
Reawakening Dormant Nerve Cells: Groundbreaking Neurotechnology Restores Motor Function
A new electrical stimulation therapy for spinal muscle atrophy (SMA) has shown promise in reactivating motor neurons and improving movement. In a pilot clinical trial, three patients who received spinal cord stimulation for one [...]
AI’s Energy Crisis Solved? A Revolutionary Magnetic Chip Could Change Everything
AI is evolving at an incredible pace, but its growing energy demands pose a major challenge. Enter spintronic devices—new technology that mimics the brain’s efficiency by integrating memory and processing. Scientists in Japan have [...]
Nanotechnology for oil spill response and cleanup in coastal regions
(Nanowerk News) Cleaning up after a major oil spill is a long, expensive process, and the damage to a coastal region’s ecosystem can be significant. This is especially true for the world’s Arctic region, [...]
The Role of Nanotechnology in Space Exploration
Nanotechnology, which involves working with materials at the atomic or molecular level, is becoming increasingly important in space exploration. By improving strength, thermal stability, electrical conductivity, and radiation resistance, nanotechnology is helping create lighter, more [...]
New Study Challenges Beliefs About CBD in Pregnancy, Reveals Unexpected Risks
CBD is gaining popularity as a remedy for pregnancy symptoms like nausea and anxiety, but new research suggests it may not be as safe as many believe. A study from McMaster University found that [...]
Does COVID increase the risk of Alzheimer’s disease?
Scientists discover that even mild COVID-19 can alter brain proteins linked to Alzheimer’s disease, potentially increasing dementia risk—raising urgent public health concerns. A recent study published in the journal Nature Medicine investigated whether both mild and [...]
New MRI Study Reveals How Cannabis Alters Brain Activity and Weakens Memory
A massive new study sheds light on how cannabis affects the brain, particularly during cognitive tasks. Researchers analyzed over 1,000 young adults and found that both heavy lifetime use and recent cannabis consumption significantly reduced brain [...]
How to Assess Nanotoxicity: Key Methods and Protocols
With their high surface area and enhanced physicochemical properties, nanomaterials play a critical role in drug delivery, consumer products, and environmental technologies. However, their nanoscale dimensions enable interactions with cellular components in complex and [...]
Nanotech drug delivery shows lasting benefits, reducing need for repeat surgeries
A nanotechnology-based drug delivery system developed at UVA Health to save patients from repeated surgeries has proved to have unexpectedly long-lasting benefits in lab tests – a promising sign for its potential to help human patients. [...]
Scientists Just Found DNA’s Building Blocks in Asteroid Bennu – Could This Explain Life’s Origins?
Japanese scientists detected all five nucleobases — building blocks of DNA and RNA — in samples returned from asteroid Bennu by NASA’s OSIRIS-REx mission. NASA’s OSIRIS-REx mission brought back 121.6 grams of asteroid Bennu, unveiling nitrogen-rich organic matter, including DNA’s essential [...]
AI-Designed Proteins – Unlike Any Found in Nature – Revolutionize Snakebite Treatment
Scientists have pioneered a groundbreaking method to combat snake venom using newly designed proteins, offering hope for more effective, accessible, and affordable antivenom solutions. By utilizing advanced computational techniques and deep learning, this innovative [...]
New nanosystem offers hope for improved diagnosis and treatment of tongue cancer
A pioneering study has unveiled the Au-HN-1 nanosystem, a cutting-edge approach that promises to transform the diagnosis and treatment of tongue squamous cell carcinoma (TSCC). By harnessing gold nanoparticles coupled with the HN-1 peptide, [...]