A paper published in the journal ACS Applied Bio Materials demonstrates the feasibility of nanocomposites synthesized from silver nanoparticles (AgNPs) and carbon nanodots (C-dots) as an antibacterial agent against bacterial infections in fish, specifically in freshwater-farmed fish.
Background
The rapid expansion and development of the aquaculture industry in recent years has gradually increased the incidence of severe diseases caused by bacterial infections in fish.
Pathogenic bacterial infections are leading to a substantial economic impact on the aquaculture industry owing to their extensive and rapid transmissibility, which increases the difficulty in treatment, as well as morbidity and mortality in fish. Thus, the treatment and prevention of bacterial diseases remain among the top priorities for the aquaculture industry.
The application of commonly used sterilization methods, such as thermal sterilization, against bacterial infections in fish, is extremely difficult owing to the limitations associated with the aquaculture conditions.
Similarly, the use of antibacterial reagents, such as potassium permanganate and antibiotics, can potentially lead to bacterial resistance and harmful effects on human health.
Nanomaterials, such as zinc oxide nanoparticles and AgNPs, demonstrated significant potential as an antibacterial agent. Among them, AgNPs displayed more effectiveness compared to other nanomaterials owing to their low cytotoxicity to human cells and high antimicrobial efficiency.
However, the practical applications of AgNPs are limited as AgNPs easily oxidize and aggregate, which can reduce their effectiveness against Gram-negative bacteria. Thus, in this study, researchers synthesized carbon nanodot and AgNP composite (AgNPs@C-dots) and investigated its effectiveness as a therapeutic and preventive agent against fish bacterial diseases.
The antibacterial properties of the synthesized AgNPs@C-dots were evaluated against Aeromonas salmonicida, a common fish pathogen responsible for several diseases in carps. Additionally, AgNPs@C-dots were applied to zebrafish in order to investigate the changes in disease resistance of zebrafish after bacterial infection due to AgNPs@C-dots.
The Study
The chemically reduced AgNPs were prepared by initially boiling 100 mL of 100 mM AgNO3 aqueous solution, and then rapidly adding 1 mL of 10% sodium citrate solution to the boiled solution under vigorous stirring. Subsequently, the mixed solution was again boiled for 10 min and then stirred for 15 min. AgNPs were obtained after the mixture was cooled down.
The stability of the antibacterial application of AgNPs@C-dots was determined by incubating them with a lysogeny broth (LB) medium containing river water or lake water and 108 CFU mL-1 Aeromonas salmonicida, while the salt stability of the composite was evaluated by immersing it in different concentrations of sodium chloride (NaCl) solutions.
Additionally, AgNPs@C-dots were placed at room temperature for 30 days to assess their long-term stability. The bacterial sensitivity to nanomaterials was evaluated using the disk diffusion test.
The antibacterial characteristics of AgNPs@C-dots were assessed by adding 106 CFU mL-1 Aeromonas salmonicida to a 3 mL liquid LB broth medium supplemented with various concentrations of AgNPs@C-dots.
The AgNPs@C-dots-treated bacteria were stained with calcein acetoxymethyl ester (calcein-AM) and propidium iodide (PI) in the dark for 1 h in order to visualize dead and live cells using confocal laser scanning microscopy (CLSM).
Morphological changes in the AgNPs@Cdots-treated bacteria were observed using scanning electron microscopy (SEM), while the reactive oxygen species (ROS) level of Aeromonas salmonicida cells was detected by performing e 2′,7′ dichlorodihydrofluorescein diacetate (DCFH-DA) assay. The bacterial protein and DNA leakage were detected using agarose gel electrophoresis and sodium salt (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE).
A cell counting kit 8 (CCK-8) assay was employed to measure in vitro cytotoxicity, while the overall Ag concentrations in zebrafish tissue samples were evaluated according to the Chinese National Standard GB/T 38261-2019.
Observations
Monodispersed AgNPs@C-dots were synthesized successfully with high biocompatibility and stability.
The synthesized AgNPs@C-dots displayed significantly higher stability under different harsh conditions, such as during long-term storage and in high ionic strength solutions, compared to the chemically reduced AgNPs owing to the modifications caused by C-dots.
The antibacterial assay results systematically demonstrated an exceptional antibacterial activity of AgNPs@C-dots against Aeromonas salmonicida. In vitro antibacterial results demonstrated that AgNPs@C-dots can effectively annihilate Aeromonas salmonicida at 9.5 μg mL-1 concentration.
AgNPs@C-dots damaged the bacterial cell membrane integrity, leading to leakage of cytoplasm, production of ROS, and eventual annihilation of the bacteria. Additionally, AgNPs@C-dots displayed greater biocompatibility with trace residues in fish and human cells.
The resistance of zebrafish against Aeromonas salmonicida was improved following the application of AgNPs@C-dots. Additionally, no detectable amount of Ag was observed in the muscles of zebrafish after the exposure of zebrafish to AgNPs@C-dots for 30 days.
Taken together, the findings of this study demonstrated that AgNPs@C-dots can be used to develop effective antibacterial agents in aquaculture in order to control bacterial diseases.

News
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]