A recent study submitted to the journal Chemosphere focuses on developing an electrochemical sensor for the sensitive detection of indinavir (IDV), an anti-retroviral HIV medication, by combining zinc oxide nanorods and molybdenum disulfide nanosheets on a screen-printed electrode.
What is Indinavir (IDV)?
Indinavir (IDV) is a drug used to treat the human immunodeficiency virus (HIV) that works by inhibiting the infection, acting as a semisynthetic blocker of HIV-1 and HIV-2 proteases.
Due to indinavir’s negative effect on human health, it is critical to developing an effective electrode for detecting IDV in biological settings. High-performance liquid chromatography (HPLC), spectrometry, ion chromatography, and liquid chromatography-tandem spectroscopy are often used to determine indinavir. These approaches analyze IDV in actual specimens based on different sampling and offshore laboratory assessments.
Despite their sensitivity and selectivity, routine laboratory methods are generally inaccessible to communities with the highest need due to the high cost, infrastructural limits, operating capabilities, and a shortage of onsite operability.
Electrochemical Sensors for Detection of IDV
Electrochemical sensors are mobile, flexible, low cost, responsive, and have high specificity. These are essential for enhancing chemo- and bioimaging techniques and provide a perfect foundation for developing enhanced capabilities. As a result, electrochemical-based sensors seem to be a feasible alternative for tracking IDV in a rapid, measurable, low-cost, and large-scale way.
Molybdenum Disulfide (MoS2): An Important Nanomaterial
Over the past couple of decades, nanoscale research has gained widespread recognition as a remarkable technological field that has influenced a wide range of industries. Furthermore, it brings up a plethora of opportunities for developing and implementing innovative designs, products, and systems in a variety of disciplines, including farming, food, transportation, and medical research and development.
Scientists have lately refocused their attention on other graphene-like 2D compounds to overcome the shortage of graphene and broaden the range of its applications. Molybdenum disulfide (MoS2), a multifunctional compound that has sparked a great deal of interest in nanotechnology and optoelectronic devices, is employed as a filler material and a catalyst for the hydrodesulfurization process.
As a conventional 2D layered material, it has excellent thermal resilience and strong electrocatalytic performance, making it appropriate for a wide range of applications such as detectors, electro-catalysts, superconductors, and energy storage systems. Furthermore, MoS2 with an uneven number of layers can produce alternating piezoelectric current and voltage impulses, suggesting that it could be used to operate nanodevices and wearable electronics.
Use of Metal Oxide Materials in Electrochemical Sensors
Due to their exceptional photocatalytic capabilities, metal-oxide compounds have gotten a lot of interest in recent years for use in improved electrochemical sensors. Zinc oxide (ZnO) has sparked substantial attention among metal oxide materials because of its desirable features, which include cheap cost, large availability, and a broad energy bandgap. These nanoparticles are susceptible to many contaminants, including practically all major metal ions and organic compounds.
In this work, ZnO and MoS2 were combined as electrochemical electrodes to create a multifunctional film-modified electrode for the fast monitoring of anti-retroviral (HIV) drugs. The anti-retroviral drug IDV was selected as the model drug for electrochemical sensing. The hydrothermal synthesis technique was used to produce the MoS2-based mixture with metal oxides, which was then used to change the SPE interfaces and build the appropriate electrolytic electrode.
Important Research Findings
The designed electrode was revealed to have a considerable electrocatalytic behavior with a large dynamic linear range. When used for IDV measurement in urine and blood plasma samples, the ultrasensitive electrochemical electrode composed of zinc oxide nanorods and molybdenum disulfide nanosheets achieved good results.
IDV was measured electrochemically using the proposed electrode, which has superior sensitivity, reproducibility, consistency, specificity, and recyclability. The developed biosensor was also used to test IDV levels in biological specimens, and the findings were satisfactory, with a recovery efficiency of more than 98.5 percent. These nanomaterials in electrode settings, according to the results, will be crucial in the future to increase the productivity, sensitivity, and durability of electrochemical electrodes.
Reference
Mehmandoust, M., Karimi, F. and Erk, N., (2022) A zinc oxide nanorods/molybdenum disulfide nanosheets hybrid as a sensitive and reusable electrochemical sensor for determination of anti-retroviral agent indinavir. Chemosphere, p.134430. https://www.sciencedirect.com/science/article/pii/S0045653522009237?via%3Dihub

News
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]