A recent study submitted to the journal Chemosphere focuses on developing an electrochemical sensor for the sensitive detection of indinavir (IDV), an anti-retroviral HIV medication, by combining zinc oxide nanorods and molybdenum disulfide nanosheets on a screen-printed electrode.
What is Indinavir (IDV)?
Indinavir (IDV) is a drug used to treat the human immunodeficiency virus (HIV) that works by inhibiting the infection, acting as a semisynthetic blocker of HIV-1 and HIV-2 proteases.
Due to indinavir’s negative effect on human health, it is critical to developing an effective electrode for detecting IDV in biological settings. High-performance liquid chromatography (HPLC), spectrometry, ion chromatography, and liquid chromatography-tandem spectroscopy are often used to determine indinavir. These approaches analyze IDV in actual specimens based on different sampling and offshore laboratory assessments.
Despite their sensitivity and selectivity, routine laboratory methods are generally inaccessible to communities with the highest need due to the high cost, infrastructural limits, operating capabilities, and a shortage of onsite operability.
Electrochemical Sensors for Detection of IDV
Electrochemical sensors are mobile, flexible, low cost, responsive, and have high specificity. These are essential for enhancing chemo- and bioimaging techniques and provide a perfect foundation for developing enhanced capabilities. As a result, electrochemical-based sensors seem to be a feasible alternative for tracking IDV in a rapid, measurable, low-cost, and large-scale way.
Molybdenum Disulfide (MoS2): An Important Nanomaterial
Over the past couple of decades, nanoscale research has gained widespread recognition as a remarkable technological field that has influenced a wide range of industries. Furthermore, it brings up a plethora of opportunities for developing and implementing innovative designs, products, and systems in a variety of disciplines, including farming, food, transportation, and medical research and development.
Scientists have lately refocused their attention on other graphene-like 2D compounds to overcome the shortage of graphene and broaden the range of its applications. Molybdenum disulfide (MoS2), a multifunctional compound that has sparked a great deal of interest in nanotechnology and optoelectronic devices, is employed as a filler material and a catalyst for the hydrodesulfurization process.
As a conventional 2D layered material, it has excellent thermal resilience and strong electrocatalytic performance, making it appropriate for a wide range of applications such as detectors, electro-catalysts, superconductors, and energy storage systems. Furthermore, MoS2 with an uneven number of layers can produce alternating piezoelectric current and voltage impulses, suggesting that it could be used to operate nanodevices and wearable electronics.
Use of Metal Oxide Materials in Electrochemical Sensors
Due to their exceptional photocatalytic capabilities, metal-oxide compounds have gotten a lot of interest in recent years for use in improved electrochemical sensors. Zinc oxide (ZnO) has sparked substantial attention among metal oxide materials because of its desirable features, which include cheap cost, large availability, and a broad energy bandgap. These nanoparticles are susceptible to many contaminants, including practically all major metal ions and organic compounds.
In this work, ZnO and MoS2 were combined as electrochemical electrodes to create a multifunctional film-modified electrode for the fast monitoring of anti-retroviral (HIV) drugs. The anti-retroviral drug IDV was selected as the model drug for electrochemical sensing. The hydrothermal synthesis technique was used to produce the MoS2-based mixture with metal oxides, which was then used to change the SPE interfaces and build the appropriate electrolytic electrode.
Important Research Findings
The designed electrode was revealed to have a considerable electrocatalytic behavior with a large dynamic linear range. When used for IDV measurement in urine and blood plasma samples, the ultrasensitive electrochemical electrode composed of zinc oxide nanorods and molybdenum disulfide nanosheets achieved good results.
IDV was measured electrochemically using the proposed electrode, which has superior sensitivity, reproducibility, consistency, specificity, and recyclability. The developed biosensor was also used to test IDV levels in biological specimens, and the findings were satisfactory, with a recovery efficiency of more than 98.5 percent. These nanomaterials in electrode settings, according to the results, will be crucial in the future to increase the productivity, sensitivity, and durability of electrochemical electrodes.
Reference
Mehmandoust, M., Karimi, F. and Erk, N., (2022) A zinc oxide nanorods/molybdenum disulfide nanosheets hybrid as a sensitive and reusable electrochemical sensor for determination of anti-retroviral agent indinavir. Chemosphere, p.134430. https://www.sciencedirect.com/science/article/pii/S0045653522009237?via%3Dihub

News
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]
3D bioprinting advances enable creation of artificial blood vessels with layered structures
To explore possible treatments for various diseases, either animal models or human cell cultures are usually used first; however, animal models do not always mimic human diseases well, and cultures are far removed [...]
Drinking less water daily spikes your stress hormone
Researchers discovered that people who don’t drink enough water react with sharper cortisol spikes during stressful events, explaining why poor hydration is tied to long-term health risks. A recent study in the Journal of Applied [...]
Nanomed Trials Surge Highlighting Need for Standardization
Researchers have identified over 4,000 nanomedical clinical trials in progress now, highlighting rapid growth in the field and the need for a standardized lexicon to support clinical translation and collaboration. Nanotechnology is the science of [...]