A recent study submitted to the journal Chemosphere focuses on developing an electrochemical sensor for the sensitive detection of indinavir (IDV), an anti-retroviral HIV medication, by combining zinc oxide nanorods and molybdenum disulfide nanosheets on a screen-printed electrode.
What is Indinavir (IDV)?
Indinavir (IDV) is a drug used to treat the human immunodeficiency virus (HIV) that works by inhibiting the infection, acting as a semisynthetic blocker of HIV-1 and HIV-2 proteases.
Due to indinavir’s negative effect on human health, it is critical to developing an effective electrode for detecting IDV in biological settings. High-performance liquid chromatography (HPLC), spectrometry, ion chromatography, and liquid chromatography-tandem spectroscopy are often used to determine indinavir. These approaches analyze IDV in actual specimens based on different sampling and offshore laboratory assessments.
Despite their sensitivity and selectivity, routine laboratory methods are generally inaccessible to communities with the highest need due to the high cost, infrastructural limits, operating capabilities, and a shortage of onsite operability.
Electrochemical Sensors for Detection of IDV
Electrochemical sensors are mobile, flexible, low cost, responsive, and have high specificity. These are essential for enhancing chemo- and bioimaging techniques and provide a perfect foundation for developing enhanced capabilities. As a result, electrochemical-based sensors seem to be a feasible alternative for tracking IDV in a rapid, measurable, low-cost, and large-scale way.
Molybdenum Disulfide (MoS2): An Important Nanomaterial
Over the past couple of decades, nanoscale research has gained widespread recognition as a remarkable technological field that has influenced a wide range of industries. Furthermore, it brings up a plethora of opportunities for developing and implementing innovative designs, products, and systems in a variety of disciplines, including farming, food, transportation, and medical research and development.
Scientists have lately refocused their attention on other graphene-like 2D compounds to overcome the shortage of graphene and broaden the range of its applications. Molybdenum disulfide (MoS2), a multifunctional compound that has sparked a great deal of interest in nanotechnology and optoelectronic devices, is employed as a filler material and a catalyst for the hydrodesulfurization process.
As a conventional 2D layered material, it has excellent thermal resilience and strong electrocatalytic performance, making it appropriate for a wide range of applications such as detectors, electro-catalysts, superconductors, and energy storage systems. Furthermore, MoS2 with an uneven number of layers can produce alternating piezoelectric current and voltage impulses, suggesting that it could be used to operate nanodevices and wearable electronics.
Use of Metal Oxide Materials in Electrochemical Sensors
Due to their exceptional photocatalytic capabilities, metal-oxide compounds have gotten a lot of interest in recent years for use in improved electrochemical sensors. Zinc oxide (ZnO) has sparked substantial attention among metal oxide materials because of its desirable features, which include cheap cost, large availability, and a broad energy bandgap. These nanoparticles are susceptible to many contaminants, including practically all major metal ions and organic compounds.
In this work, ZnO and MoS2 were combined as electrochemical electrodes to create a multifunctional film-modified electrode for the fast monitoring of anti-retroviral (HIV) drugs. The anti-retroviral drug IDV was selected as the model drug for electrochemical sensing. The hydrothermal synthesis technique was used to produce the MoS2-based mixture with metal oxides, which was then used to change the SPE interfaces and build the appropriate electrolytic electrode.
Important Research Findings
The designed electrode was revealed to have a considerable electrocatalytic behavior with a large dynamic linear range. When used for IDV measurement in urine and blood plasma samples, the ultrasensitive electrochemical electrode composed of zinc oxide nanorods and molybdenum disulfide nanosheets achieved good results.
IDV was measured electrochemically using the proposed electrode, which has superior sensitivity, reproducibility, consistency, specificity, and recyclability. The developed biosensor was also used to test IDV levels in biological specimens, and the findings were satisfactory, with a recovery efficiency of more than 98.5 percent. These nanomaterials in electrode settings, according to the results, will be crucial in the future to increase the productivity, sensitivity, and durability of electrochemical electrodes.
Reference
Mehmandoust, M., Karimi, F. and Erk, N., (2022) A zinc oxide nanorods/molybdenum disulfide nanosheets hybrid as a sensitive and reusable electrochemical sensor for determination of anti-retroviral agent indinavir. Chemosphere, p.134430. https://www.sciencedirect.com/science/article/pii/S0045653522009237?via%3Dihub
News
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]















