A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote the formation of cartilage tissue through controlled drug release.
Background
Cartilage has a limited ability to repair itself due to its avascular nature, which restricts nutrient flow and cell migration. Various scaffold materials, including natural polymers and composites, have been tested for cartilage repair. However, many of these face limitations such as poor mechanical strength, weak cell signaling, and inconsistent drug delivery.
Hydrogels are promising in this context because they are hydrophilic, biodegradable, and can mimic the properties of natural tissue. Designing hydrogels that coordinate immune regulation and tissue regeneration, however, remains a complex challenge.
Dexamethasone is a corticosteroid with strong anti-inflammatory effects. It can shift macrophages toward an M2 phenotype, which supports tissue repair. Kartogenin is a small molecule known to stimulate mesenchymal stem cells (MSCs) to differentiate into chondrocytes, enhancing cartilage formation. Combining both agents in a single hydrogel aims to first reduce inflammation and then encourage cartilage regeneration.
The Current Study
Researchers created a silk fibroin-based nanocomposite hydrogel loaded with Dex and KGN. KGN was covalently linked to silk proteins to form nanospheres (SPNs) that release the drug over time. Dex was incorporated non-covalently via hydrogen bonding with the silk matrix, forming a Dex-HLC complex intended for rapid release.
The hydrogel network was stabilized using enzymatic crosslinking with transglutaminase, which promoted covalent bonding between amino acid residues in the silk fibroin. This structure allowed for staged drug release: Dex would be released early to manage inflammation, and KGN would be released gradually during the tissue regeneration phase.
The hydrogel's physical and chemical properties—such as strength, degradation rate, and drug release behavior—were assessed through spectroscopy, degradation studies, and release tests. Cytocompatibility was evaluated using cultures of MSCs and macrophages to monitor adhesion, growth, and differentiation.
An in vivo rabbit model of cartilage defect was used to test the hydrogel's repair performance. After implantation, tissue samples were evaluated through histological staining (H&E, Safranin O), immunohistochemistry for inflammation and cartilage markers, and micro-CT imaging to assess cartilage and bone formation.
Results and Discussion
The hydrogel formed a stable and elastic structure with mechanical properties similar to native cartilage. It degraded at a rate aligned with typical cartilage healing timelines. In early-stage testing, Dex was released quickly and reduced inflammation, as shown by lower levels of cytokines such as TNF-α and IL-6. Macrophage analysis showed a shift from the M1 (inflammatory) to M2 (anti-inflammatory) phenotype after Dex exposure.
KGN was released over a longer period, supporting the differentiation of MSCs into chondrocytes. This was confirmed by increased expression of markers like type II collagen, SOX-9, and aggrecan. At the same time, expression of hypertrophy-associated markers like RUNX2 decreased, while RUNX1 expression increased, indicating stable chondrogenic differentiation and reduced risk of cartilage overgrowth.
In the rabbit model, defects treated with the hydrogel showed significant formation of hyaline-like cartilage, with organized extracellular matrix and tissue structures resembling native cartilage. These regions showed higher levels of cartilage matrix components and new bone formation compared to control groups. Immunohistochemical staining revealed reduced inflammatory signaling and increased collagen type II levels, confirming tissue regeneration with limited inflammation and hypertrophy.
Conclusion
This study describes a dual-drug nanocomposite hydrogel for cartilage repair that delivers Dex for early inflammation control and KGN for long-term cartilage regeneration. The material showed favorable mechanical performance, cell compatibility, and regenerative effects in a rabbit cartilage defect model. The combination of immune modulation and support for chondrogenesis represents a comprehensive strategy for tissue engineering.
While initial results are encouraging, further research is needed to refine drug delivery profiles, evaluate long-term outcomes, and confirm safety in larger animal models. This approach highlights the potential of responsive hydrogel systems in addressing challenges in cartilage repair and osteoarthritis treatment.
Journal Reference
Lei, H., Fan, D. (2025). Dual drug delivery nanocomposite hydrogel for cartilage repair: immunomodulation and chondrogenesis. Engineering. DOI: 10.1016/j.eng.2025.05.010, https://www.sciencedirect.com/science/article/pii/S2095809925002875?via%3Dihub

News
Scientists Discover 20 Percent of Human DNA Comes from a Mysterious Ancestor
Humans carry a complex genetic history that continues to reveal surprises. Scientists have found that 20% of our DNA may come from a mysterious ancestor, according to WP Tech. This discovery changes how we understand [...]
AI detects early prostate cancer missed by pathologists
Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to find subtle tissue changes [...]
The Rare Mutation That Makes People Immune to Viruses
Some people carry a rare mutation that makes them resistant to viruses. Now scientists have copied that effect with an experimental mRNA therapy that stopped both flu and COVID in animal trials — raising [...]
Nanopore technique for measuring DNA damage could improve cancer therapy and radiological emergency response
Scientists at the National Institute of Standards and Technology (NIST) have developed a new technology for measuring how radiation damages DNA molecules. This novel technique, which passes DNA through tiny openings called nanopores, detects [...]
AI Tool Shows Exactly When Genes Turn On and Off
Summary: Researchers have developed an AI-powered tool called chronODE that models how genes turn on and off during brain development. By combining mathematics, machine learning, and genomic data, the method identifies exact “switching points” that [...]
Your brain could get bigger – not smaller – as you age
recently asked myself if I’ll still have a healthy brain as I get older. I hold a professorship at a neurology department. Nevertheless, it is difficult for me to judge if a particular brain, [...]
Hidden Cost of Smart AI: 50× More CO₂ for a Single Question
Every time we ask an AI a question, it doesn’t just return an answer—it also burns energy and emits carbon dioxide. German researchers found that some “thinking” AI models, which generate long, step-by-step reasoning [...]
Genetically-engineered immune cells show promise for preventing organ rejection
A Medical University of South Carolina team reports in Frontiers in Immunology that it has engineered a new type of genetically modified immune cell that can precisely target and neutralize antibody-producing cells complicit in organ rejection. [...]
Building and breaking plastics with light: Chemists rethink plastic recycling
What if recycling plastics were as simple as flicking a switch? At TU/e, Assistant Professor Fabian Eisenreich is making that vision a reality by using LED light to both create and break down a [...]
Generative AI Designs Novel Antibiotics That Defeat Defiant Drug-Resistant Superbugs
Harnessing generative AI, MIT scientists have created groundbreaking antibiotics with unique membrane-targeting mechanisms, offering fresh hope against two of the world’s most formidable drug-resistant pathogens. With the help of artificial intelligence, MIT researchers have [...]
AI finds more breast tumors earlier than traditional double radiologist review
AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by researchers led by Radboud [...]
Lavender oil could speed recovery after brain surgery
A week of lavender-scented nights helped brain surgery patients sleep more deeply, shorten delirium, and feel calmer, pointing to a simple, natural aid for post-surgery care. A randomized controlled trial investigating the therapeutic impact [...]
Targeting Nanoparticles for Heart Repair
Scientists have engineered dual-membrane nanoparticles that home in on heart tissue after a heart attack, delivering regenerative molecules while evading the body’s immune defences. Myocardial infarction, better known as a heart attack, is a [...]
Natural Compound Combo Restores Aging Brain Cells
Scientists have identified a natural compound combination that reverses aging-related brain cell decline and removes harmful Alzheimer’s-linked proteins. The treatment, combining nicotinamide (vitamin B3) and the green tea antioxidant epigallocatechin gallate, restores guanosine triphosphate [...]
Silver Nanoparticles Get a Green Makeover: An Eco-Friendly Way to Target Diabetes
Researchers have developed an eco-friendly method to produce silver nanoparticles from the roots of Martynia annua, showing strong antioxidant and anti-diabetic potential while avoiding the toxic by-products of conventional synthesis. Silver nanoparticles are particularly popular in research because [...]
Quantum Breakthrough: Scientists Find “Backdoor” to 60-Year-Old Superconducting Mystery
A Copenhagen team has unlocked a clever “backdoor” into studying rare quantum states once thought beyond reach. Scientists at the Niels Bohr Institute, University of Copenhagen, have discovered a new approach for investigating rare [...]